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ABSTRACT

Previous work on spoken language understanding (SLU) mainly fo-
cuses on single-intent settings, where each input utterance merely
contains one user intent. This configuration significantly limits the
surface form of user utterances and the capacity of output seman-
tics. In this work, we firstly propose a Multi-Intent dataset which is
collected from a realistic in-Vehicle dialogue System, called MIVS.
The target semantic frame is organized in a 3-layer hierarchical struc-
ture to tackle the alignment and assignment problems in multi-intent
cases. Accordingly, we devise a BiRGAT model to encode the hier-
archy of ontology items, the backbone of which is a dual relational
graph attention network. Coupled with the 3-way pointer-generator
decoder, our method outperforms traditional sequence labeling and
classification-based schemes by a large margin. Ablation study in
transfer learning settings further uncovers the poor generalizability
of current models in multi-intent cases.

Index Terms— Spoken Language Understanding, relational
graph attention network, hierarchical semantic frame

1. INTRODUCTION

Spoken language understanding (SLU, [1]), which aims to parse the
user utterance into a semantic frame, plays a critical role in building
dialogue systems. Previous works focus on parsing utterances con-
taining merely one intent. This simplification decomposes the original
task into two sub-tasks, namely slot filling and intent detection [2].
When it comes to multi-intent cases [3], the traditional sequence
labeling [4] (for slot filling) and sentence classification [5] (for in-
tent detection) schemes are not applicable due to 1) the slot-value
alignment problem, and 2) the slot-intent assignment issue.

Firstly, the same slot value may be aligned to multiple slots or
used several times in the target semantic representation (duplicate
alignments). As shown in Figure 1, the slot-value pair “act=turn
on" is used twice to control the “blue-tooth" and “music rhythm".
Besides, some frequently used slot values may be implicitly men-
tioned and will not occur as a continuous span in the input utterance,
which is also known as the unaligned slot value problem [6]. In both
cases, the traditional sequence labeling strategy is not applicable.

Furthermore, in multi-intent cases, if slot filling and intent detec-
tion are treated as separate tasks, the affiliation relationship from slot
to intent can not be determined. In other words, slot-value pairs need
to be clustered and allocated to their parent intent, restricted by the
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Fig. 1. A multi-intent example from MIVS dataset.

hierarchy of ontology items. As illustrated in Figure 1, we need to
distinguish that the “blue-tooth" and “front windows" should be
“turned on and “closed" respectively. And a simple modification of
multi-class intent detection into multi-label classification [7, 8] will
lose this slot-intent assignment information.

To this end, we firstly construct a large-scale Multi-Intent Chi-
nese dataset collected from a realistic in-Vehicle System (MIVS)
with 105, 240 data points. It also contains multi-domain samples
where each input utterance involves two domains since users often
lazily make their requests all at once for convenience. The target
semantic frame is organized as a 3-layer tree, rooting from domains
to intents and then slots (exemplified in the lower part of Figure 1). In
accordance with this structured representation, we inject the hierarchy
knowledge of ontology items into the encoder through two dual rela-
tional graph attention networks (RGAT, [9]). As for the decoder, after
linearizing the tree representation into a string sequence with sentinal
tokens, an adapted pointer-generator auto-regressive network [10] is
utilized to selectively copy raw question words and ontology items to
the output side. Experiments on two multi-intent datasets with hierar-
chical semantics, Chinese MIVS (this work) and English TOPv2 [11],
demonstrate the advantage of our proposed BiRGAT framework over
traditional methods. Codes and data are publicly available 1.

2. DATASET CONSTRUCTION

Given the ontology O = {oi}|O|
i=1 where oi denotes a domain, intent,

or slot, SLU converts an utterance Q = (q1, q2, · · · , q|Q|) into the
semantic frame y. The hierarchical structure of domain→intent→slot
is also provided as input structural priors.

1https://github.com/importpandas/MIVS_BIRGAT
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Fig. 2. An overview of the BiRGAT model architecture.

Prevalent benchmark ATIS [12] or SNIPS [13] simplifies the
task by focusing on one single domain, considering one intent per
utterance, and ignoring the hierarchy. In this work, we generalize
to more practical scenarios where each utterance involves multiple
intents and even multiple domains. Accordingly, the target semantic
frame y is labeled as a tree to reflect the structure. The comparison to
previous benchmarks is present in Table 1.

Dataset Multi-
domain

Multi-
intent

Hierarchical
Annotation

# of
Samples

ATIS % % % 6k

SNIPS % % % 14k

MixATIS % ✓ % 20k

MixSNIPS % ✓ % 50k

TOPv2 % ✓ ✓ 181k

MIVS (ours) ✓ ✓ ✓ 105k

Table 1. Comparison to previous benchmarks.

The multi-intent MIVS dataset contains 5 different domains,
namely map, weather, phone, in-vehicle control and music. The
dataset can be split into two parts: single-domain examples contain
both single-intent and multi-intent cases, which are collected and
manually annotated from a realistic industrial in-vehicle environment;
cross-domain examples are automatically synthesized following Mix-
ATIS [3]. Concretely, we extract two utterances from two different
domains and concatenate them by conjunction words such as “and”.
The semantic tree is serialized as an output token sequence by insert-
ing sentinel tokens such as brackets for clustering.

3. MODEL ARCHITECTURE

The entire BiRGAT model can be split into three parts as shown in
Figure 2. Firstly, we adopt an ontology encoding module to obtain the
initial ontology embedding (§ 3.1). Next, these features are further
encoded via a dual RGAT for structural knowledge enhancement

(§ 3.2). After that, an auto-regressive decoder is employed to produce
the serialized semantic frame based on the encoded memory (§ 3.3).

3.1. Ontology Encoding Module

Inspired by the concept of label embeddings [14], given an ontol-
ogy item odi ∈ Od = {odi }

|Od|
i=1 from one specific domain d (e.g.,

music), we can initialize its embedding od
i ∈ R1×m (dimension is

m) from either static word vectors (SWV) or pre-trained language
models (PLMs) such as BERT [15], see Figure 2(a).

Concretely, we first concatenate all ontology items odi =
(odi1, · · · , odil) as well as their semantic type odi0 ∈ {DOMAIN, INTENT,
SLOT} to form a unified ontology sequence. Then the input sequence
is fed into either a SWV module or PLM module to get token-level
ontology embeddings. Finally, the forward and backward hidden
states from a type-aware single-layer Bi-LSTM are concatenated as
the ontology embedding od

i ∈ R1×m for each ontology item odi .
For domain d, we stack the initial embeddings of all ontology

items to attain the domain feature matrix Od ∈ R|Od|×m. In multi-
domain cases, we take one more step to stack matrices Od from all
possible domains d and get the entire matrix O(0) ∈ R|O|×m, where
O =

⋃
d O

d. Otherwise, Od directly serves as O(0).
For input question Q = (q1, q2, · · · , q|Q|), the initial features

Q(0) ∈ R|Q|×m can also be initialized from SWV or PLM.

3.2. BiRGAT Encoder

After obtaining the initial matrix Q(0) and O(0) of question words
and ontology items, this module further enriches features with struc-
tural knowledge and cross-segment information. The BiRGAT en-
coder consists of L layers, the computation for layer l is

Q(l+1),O(l+1) = BiRGAT(Q(l),O(l)),

where 0 ≤ l ≤ L−1. Each layer includes three sub-modules, namely
1) dual multi-head self-attention, 2) dual multi-head cross-attention,
and 3) feedforward network. Each sub-module is also wrapped with
residual connections and LayerNorm function.
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3.2.1. Dual Multi-head Self-attention

Transformer [16] architecture is a specific implementation of graph
attention network (GAT, [17]). To integrate the hierarchical structure
among ontology items, we adapt the multi-head self-attention module
by relative position embeddings [18]. Concretely, edge feature zij is
introduced from adjacent ontology item oj to oi when computing the
attention weight eij and attention vector õi,

eij =
(oiWq)(ojWk + zijWz)

T

√
m

,

õi =
∑

j∈N (i)

aij(ojWv + zijWz),

where aij is the softmax version of eij and N (i) denotes the neigh-
borhood of oi.

We design the relation type zij between ontology items mainly
to address the multi-intent and multi-domain problem. The slot items
only have slot-intent relations with their parent intents. Similarly,
the slot and intent items only have slot-domain and intent-domain
relations with their parent domains, respectively. This design not only
models the hierarchical semantic frame of the ontology structure but
also mitigates the inter-domain information interference.

As for the question, we construct a complete graph among ques-
tion words and utilize relative distances between words as the relation
zij . To avoid over-parametrization, all edge features zij are shared
across different layers and heads.

3.2.2. Dual Multi-head Cross-attention

This sub-module aims to gather information for each question word
from the counterpart ontology items (and vice versa). By analogy
to the multi-head cross-attention module in Transformer decoder,
features of ontology items are incorporated as key/value vectors to
enrich the representation of each question word. The symmetric part
can be easily inferred, see the middle part of Figure 2(b).

After the relational graph encoding and cross-segment encoding,
features of question words and ontology items are passed into a
feedforward network. The outputs Q(L) and O(L) of the last layer L
serve as the final encoder memory Q and O.

3.3. Decoder with Copy Mechanism

Given encoder memory Q and O, the output token sequence y =
(y1, y2, · · · , y|y|) is produced auto-regressively via a single-layer
Transformer decoder. The decoder hidden state st at timestep t is

st = TransformerDecoder(y<t, [Q;O]).

Notice that yt can be words in slot values, sentinel tokens (e.g.,
brackets), or an ontology item in the pre-defined specification. It is
difficult to generate an ontology item token-by-token because a simple
morphological change or synonym substitution will cause parsing
errors while post-processing the linearized semantic frame y. Thus,
we introduce a three-way gate to control the action of generating
a token from a fixed vocabulary, copying a word from the question
memory Q, and selecting an ontology item from the ontology memory

O. Formally, given the decoder hidden state st ∈ R1×m,

gt = softmax(stWg), gt ∈ R1×3,

Pgen(wi) = softmaxi(stWgenϕ(wi)
T),

Pcopy(wi) =
∑

k: qk=wi

PtrNet(st,Q)[k],

Pselect(oi) = PtrNet(st,O)[i],

P (yt|st,Q,O) = gt1Pgen + gt2Pcopy + gt3Pselect,

where ϕ(wi) returns the word embedding of wi in a fixed vocabulary
which is shared with the encoder, and PtrNet(st,Q)[k] denotes the
probability of choosing the k-th entry (row) in memory Q which is
implemented as the average weight from different heads of a multi-
head cross-attention module (known as the pointer network, [10]).
The training objective is decoupled as

L = −
|y|∑
t=1

logP (yt|y<t,Q,O).

4. EXPERIMENT

4.1. Datasets

We experiment on two multi-intent SLU datasets, namely Chinese
MIVS (this work) and English TOPv2 [11]. The original output for-
mat of TOPv2 is inconsistent with our annotation. Thus, we convert
the output labels of TOPv2 into our 3-layer hierarchical structure (§ 2).
We report the sentence-level accuracy as the evaluation metric.

4.2. Implementation Details

Our model is implemented with Pytorch and transformers library.
The hidden dimension m is 256/512 for SWV and PLM respectively.
The number of layers for the BiRGAT encoder is 2. As for the pointer-
generator decoder, the number of layers is fixed to 1. The number
of heads and dropout rate are set to 8 and 0.2 respectively. We use
AdamW [19] optimizer with a linear warmup scheduler. The warmup
ratio of total training steps is 0.1. The leaning rate and weight decay
rate are 5e-4/1e-4 for SWV and 2e-4/0.1 for PLM. We train all the
models with a batch size of 20 and 100k training iterations. For
inference, we adopt beam search with size 5.

4.3. Main Results

In main experiments, we merge all data samples, including single-
domain and multi-domain, and feed ontology items from all domains
as input. Thus the model needs to determine the specific domain(s)
of the current utterance. We adopt the classic Sequence Labeling
(SL) method [20] as the baseline. By treating frequent but unaligned
“(domain, intent, slot, value)” quadruples as utterance-level labels,
we add a multi-label CLassiFier to tackle the unaligned slot value
problem. From Table 2, we can observe that:

1) Compared to traditional methods SL and SL+CLF, sequence
generation is more suitable for tackling the hierarchical semantic
frames. The inherent limitation of SL-based methods makes it diffi-
cult to recover the semantic structure from a flattened sequence.

2) Ontology copy mechanism is significant to ensure the consis-
tency with pre-defined names of ontology items. This conclusion
is verified not only with our customized pointer-generator BiRGAT
decoder but also with the end-to-end BART [21] model.
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Init Method MIVS TOPv2
Dev Test Dev Test

SWV

SL 14.3 14.2 28.1 28.9
+CLF 21.2 21.4 35.6 36.3

BiRGAT 84.9 85.6 86.1 85.9
w/o Copy 72.5 72.8 82.0 82.1

BART 27.0 26.8 84.3 83.7
w/ Copy 63.7 63.3 87.6 87.2

BERT

SL 14.8 14.9 29.1 29.8
+CLF 23.0 23.1 36.8 37.5

BiRGAT 89.3 89.3 88.0 87.8
w/o Copy 75.6 75.5 84.1 84.1

RoBERTa BiRGAT 89.3 89.2 88.1 87.9
ELECTRA 90.0 90.2 88.4 88.0

Table 2. Main Results on MVIS and TOPv2 datasets.

4.4. Ablation of BiRGAT Encoder

Init w/ OE GNN w/ DCA MIVS TOPv2

SWV

% None %
83.3 82.6

✓ 83.9 85.3

✓ GAT % 84.1 85.3
✓ 84.8 85.9

✓ RGAT % 84.7 85.2
✓ 85.6 85.9

BERT

% None %
88.4 86.1

✓ 89.1 87.6

✓ GAT % 88.4 87.7
✓ 89.4 87.8

✓ RGAT % 89.1 87.3
✓ 89.3 87.8

Table 3. Ablation study on BiRGAT encoder. w/ OE: with ontology
encoding; w/ DCA: with dual multi-head cross-attention.

In this section, we study the contribution of each component in
the BiRGAT encoder, including Ontology Encoding module (OE),
relational features zij (GAT v.s. RGAT), and Dual multi-head Cross-
Attention sub-module of GNN layer (DCA). According to Table 3,
we can summarize that:

1) Leveraging the text description of ontology items (w/ OE) is
effective in enriching the semantics of ontology embeddings. This
observation is consistent for both two datasets and all settings.

2) Both structural (GAT) and relational (RGAT) encoding can
boost the performance. Compared to TOPv2, our MIVS dataset
seems to benefit more from the hierarchy of ontology items. It can
be attributed to the fact that data samples in MIVS contain relatively
more intents and exhibit more complicated output tree structures.

3) Although the separate encoding of question and ontology
already achieves remarkable results, the integration of cross-segment
attention still brings stable performance gains on both datasets.

4.5. Transfer to More Intents

In this section, we explore the intent generalizability of current SLU
models. Concretely, we train the model on data samples with the

Fig. 3. Few-shot learning experiments when transferring to more
intents (> 3) in domain “in-vehicle control”. Due to the max token
limit, prompts of LLM are truncated to at most 10 exemplars.

number of intents less or equal to 3, but evaluate the model on ex-
amples containing more intents (> 3). We can further fine-tune the
model with a few samples containing > 3 intents. We conduct exper-
iments on domain “in-vehicle control” since it contains more intents
on average. We also introduce a large language model (LLM, [22])
baseline, i.e., text-davinci-003 with in-context learning (ICL) for
comparison. From Figure 3 we can observe that:

1) Disappointingly, our method is less performant than SL-based
methods in zero-shot settings. Through the case study, we find that
most erroneous predictions merely contain 3 intents and omit an entire
intent sub-tree. We hypothesize that the generation-based method
suffers from the problem of over-fitting the output length, while
SL-based methods achieve better generalization of length variation.

2) In few-shot settings, our method dramatically surpasses SL-
based methods with merely 5 samples. Moreover, SL-based methods
attain limited improvements from fine-tuning. It can be explained
that outputs with more intents usually present more complicated
structures, which may be tough for SL-based methods to reconstruct.

3) Despite exciting results in other fields, it is difficult for LLM
to produce both semantically coherent and syntactically-valid output
sequences with very few exemplars.

5. CONCLUSION

In this work, we propose a large-scale multi-domain multi-intent
dataset MIVS which is collected from a realistic in-vehicle dialogue
system. Accordingly, we devise a BiRGAT model to incorporate
the hierarchy of ontology items into the graph encoder and intro-
duce a three-way copy mechanism to the decoder. Experiments on
datasets MIVS and TOPv2 demonstrate the superiority of BiRGAT
over various baselines.
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