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ABSTRACT
The growing prevalence of visually rich documents, such as web-
pages and scanned/digital-born documents (images, PDFs, etc.), has
led to increased interest in automatic document understanding and
information extraction across academia and industry. Although
various document modalities, including image, text, layout, and
structure, facilitate human information retrieval, the interconnected
nature of these modalities presents challenges for neural networks.
In this paper, we introduce WebLM, a multimodal pre-training net-
work designed to address the limitations of solely modeling text and
structure modalities of HTML in webpages. Instead of processing
document images as unified natural images, WebLM integrates the
hierarchical structure of document images to enhance the under-
standing of markup-language-based documents. Additionally, we
propose several pre-training tasks to model the interaction among
text, structure, and image modalities effectively. Empirical results
demonstrate that the pre-trained WebLM significantly surpasses
previous state-of-the-art pre-trained models across several web-
page understanding tasks. The pre-trained models and code are
available at https://github.com/X-LANCE/weblm.
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1 INTRODUCTION
Visually rich documents have become the primary means of or-
ganizing, presenting, storing, and transmitting information over
the Internet for billions of individuals. Recent advancements in the
domain of deep learning and natural language processing have led
to increasing attention toward automatically understanding and
extracting information from these documents due to their diverse
application scenarios [10, 18, 19, 30, 31]. To address the challenges
posed by the cross-modality interconnections within visually rich
documents, self-supervised training on large-scale unlabeled data
[6, 8, 26] and multimodal pre-training techniques [5, 29, 33, 34]
have emerged as promising approaches for Visually Rich Docu-
ment Understanding (VRDU) tasks.

Multimodal pre-training models for documents can be broadly
classified into two categories, namely image-oriented and text-
oriented, based on the target document type. Image-oriented meth-
ods [2, 11, 17, 23, 37, 38] deal with scanned/digital-born documents,
where document images are easily accessible, and textual portions
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Figure 1: Comparison among differentmultimodal document
pre-training methods.

are typically acquired using external optical character recognition
(OCR) tools. Text-oriented methods [7, 12, 13, 21], on the other
hand, are concerned with markup-language-based documents such
as webpages. Existing webpage pre-training models only use HTML
as input, which consists of the structured description language and
natural language content, i.e., the structure and text modalities.
This situation arises mainly because the current web pre-training
datasets are either HTML-only like Common Crawl 1, or failed to
reach the pre-training scale. However, it is impossible to under-
stand real-world webpages using HTML alone due to the lack of
information from other resources as we discussed in §3.1.

Furthermore, it is hard to seamlessly apply current multimodal
pre-training methods to web pages. These approaches often treat
document images as natural images, neglecting the structural com-
plexities inherent in documents. As depicted in Figure 1(a), region-
basedmethods like LayoutLMv3[17] partitions images into regions
to extract region-level features, while object-basedmethods[23] in
Figure 1(b) rely on external tools to identify document objects and
then extract object-level features. Unfortunately, both two types
of methods neither capture multi-granularity visual features nor
model the semantic relationship among those features. On the one
hand, webpages exhibit a hierarchical structure, ranging from pages
to sections, regions, and elements. External tools such as optical
character recognition (OCR) or object detectors only recognize
objects at a specific granularity, yet they are unable to capture fea-
tures across various levels. On the other hand, there exist diverse
semantic relationships between visual features of webpages, such
as the sibling relationship between two elements or the parent-child
relationship between the element and its parent section. The key
to modeling such relationships is the structure of webpages that
previous methods struggle to encode.
1https://commoncrawl.org/

To address the above problems, we first collect a large-scale mul-
timodal dataset for webpage pre-training, comprising a collection
of 6 million webpages from over 60,000 domains. This dataset en-
compasses HTML code, screenshots, and corresponding metadata.
Second, we proposeWebLM, a unified Transformer framework that
concurrently models text, structure (markup language), and image
modalities for understanding webpages. As shown in Figure 1(c),
WebLM is able to extract hierarchical visual features with the incor-
poration of HTML structure. This is implemented by considering
the visual alignment between HTML tags and image regions con-
tained in the metadata of our datasets. Last, we propose two novel
pre-training tasks: Tree Structure Prediction (TSP), focuses on
predicting the tree-relationship between HTML nodes, which mod-
els the semantic structure of webpages both textually and visually;
Visual Misalignment Detection(VMD), incorporates noise into
the image region of HTML tags, compelling the model to be robust
to the visual alignment between the two modalities.

We evaluate the WebLM models on the Web-based Structural
Reading Comprehension (WebSRC) [4] dataset and the Structured
Web Data Extraction (SWDE) [14]dataset. Experimental results
show that our WebLM significantly outperforms previous SOTA
pre-trained models. Ablation studies further demonstrate the effec-
tiveness of incorporating the hierarchical visual feature.

The contributions of this paper are summarized as follows:
• We collect a large-scalemultimodal dataset of 6millionweb-
pages from over 60,000 domains. The dataset, pre-trained
models, and code are publicly available.

• We propose WebLM for webpage understanding, which in-
troduces hierarchical visual features by first incorporating
HTML structure into visual feature extraction.

• We propose two novel pre-training tasks to effectively model
the semantic structure of webpages and enhance the visual
robustness of WebLM.

2 RELATEDWORK
2.1 Multi-modal Document Pre-training
Visually rich documents can be roughly divided into two cate-
gories based on the modalities involved: one is image-centric
documents with image modality at the core, such as receipts and
PDFs, where tasks often provide only image information and re-
quire external tools like OCR to obtain text and its location; the
other is text-centric web documents, where the document image
needs to be interactively and dynamically rendered based on the
markup-language-based documents such as HTML/XML.

For scanned/digital-born documents, current pre-training meth-
ods often focus on extracting different granularity of visual features
and then modeling the modality interaction via pre-training tasks.
Both LayoutLM [37] and LayoutLMv2 [38] uses ResNet-101 to ex-
tract fine-grained token-level visual features, whereas LayoutLMv2
introduces Text-Image Alignment and Text-Image Matching tasks
to enhance the modality interaction. LayoutLMv3 [17] and DiT
[22] adopt the encoding approach of Image Transformers (such as
ViT [9]) for document image encoding. However, previous methods
always overlook the hierarchical structure of documents, and the as-
sociation between images and text is often provided by off-the-shelf
tools, making it difficult for the model to learn.
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For mark-language-based documents represented by webpages,
existing pre-training models mainly focus on encoding the HTML
source code, emphasizing the interaction between textual and struc-
ture modalities. MarkupLM [21] inputs the text token sequence
of HTML code and incorporates the xpath of each text’s node as
relation embedding. DOM-LM [7] extracts various structured in-
formation for text tokens, such as depth, tag type, and node index.
Webformer [12] designs a recursive encoding method for the tree
structure of webpages. Furthermore, HTLM [1] focuses on zero-shot
prompting through HTML-based pre-training. Those pre-training
models mainly utilize HTML as inputs while ignoring the image
modality. However, as discussed in §3.1, HTML code in webpages
contains only a portion of the information, while more style and
structural information are found in webpage screenshots.

2.2 Webpages Understanding
Webpages are the primary means for people to store, display, and
transmit information on the Internet, making the automatic un-
derstanding and information extraction of webpages a blooming
research topic. Hao et al. [14] proposed the SWDE dataset for in-
formation extraction on webpages. Tanaka et al., as well as Chen
et al., introduced web-oriented reading comprehension datasets
VisualMRC [35] and WebSRC [4], respectively, requiring models to
understand the spatial structure of webpages as well as the textual
content to answer corresponding questions. At the same time, many
approaches [27, 32, 39] employ graph neural networks to encode
node relationships in webpages. Additionally, large language mod-
els [13] have been proven to possess strong webpage understanding
capabilities via few-shot learning.

3 WEBLM
WebLM is a multimodal pre-training framework that incorporates
HTML structure into visual feature extraction. The motivation of
WebLM is discussed in §3.1, followed by the introduction of model
architecture (§3.2) and pre-training tasks (§3.3).

3.1 Motivation of WebLM
We show the overall rendering process of webpages in Figure 2. As
we can see, it is impossible to represent and understand real-world
webpages using HTML alone. This is mainly due to two reasons:

• HTML does not contain information from external files, such
as JavaScript, CSS, images, and other resources.

• Even with all the resources, rendering a webpage still re-
quires browsers to interpret and execute the code, a complex
process that existing models struggle to learn.

Therefore, we believe that understanding webpages necessitates
a multimodal approach, simultaneously incorporating both HTML
code and webpage screenshots. On the one hand, screenshots con-
tain themost complete style information, while HTML encompasses
all content information, ensuring the coverage of all essential in-
formation. On the other hand, HTML represents the initial state
of the webpage, and the screenshot corresponds to the final state.
Employing these two states for webpage understanding eliminates
the need to learn browser rendering logic. Moreover, the comple-
tion of the rendering process results in a direct visual alignment
between each node in the HTML and the region in the screenshot.

Figure 2: The rendering process from HTML to a webpage.

WebLM leverages this alignment to provide visual features for each
level of nodes in the HTML tree, effectively fusing structural and
visual information to obtain hierarchical features of the images.

3.2 Model Architecture
WebLM applies a unified multimodal Transformer to learn cross-
modal representationswhere Figure 3 gives the architecture overview.
The Transformer encoding layer is similar to BERT’s [8], with key
alterations made at the input layer. As shown in Figure 3, the input
primarily comprises information from three modalities, correspond-
ing to three different colors. Structure modality and content modal-
ity mainly come from HTML code, while visual modality comes
from webpage screenshots. The primary design principles of the
WebLM input layer are as follows:

• Separate structure tokens from content tokens. Previ-
ous models either directly take HTML code as input [4, 13],
or solely input the textual token of HTML while consider-
ing structure modality as supplementary features [21]. In
contrast, WebLM takes both structure and textual tokens of
HTML as input while separating the two modalities. This
approach not only retains full document structure informa-
tion by preserving the structure tokens but also accelerates
information flow within each modality.

• Align visual features with HTML inputs. Most multi-
modal pre-training methods [17, 23, 38]regard the extracted
sequence of visual features as a separate input sequence with
respect to text modalities. However, the alignment between
text and image modalities is directly available in the context
of webpages. Thus it is intuitive and reasonable to align vi-
sual features with text modalities before inputting them into
the model rather than interacting during pre-training.

We further introduce the embedding details of each modality:

Token Embedding. To construct the input token sequence for
the model, we first convert the HTML code into a DOM tree and
traverse it in a depth-first order. During traversing, we perform
structural separate, which places structure tokens and text tokens
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Figure 3: The architecture and pre-training objectives of WebLM. The blue and green parts represent structure and content
inputs from HTML code respectively, while the yellow part corresponds to visual inputs from webpage screenshots.

in two lists. After concatenating the two sequences, we get the final
input token sequence like

T = {[CLS], 𝑠1, 𝑠2, ..., [SEP]𝑐1, 𝑐2, ..., [SEP]}.

It is worth noting that our structure tokens only include the
HTML tags themselves, excluding their attributes, as attribute in-
formation introduces significant noise. Furthermore, we simplify all
tags into three types: <start_tag>, <end_tag>, and <leaf_tag>,
and add tag types as additional embeddings. In fact, HTML tags
have two main functions: one is to express the tree structure of
HTML through the correspondence between pairs of opening and
closing tags (e.g., <p> and </p>) and their nesting; the other is to
indicate tag-specific roles, such as <h1> for headings and <img>
for images. With approximately 120 common tags and extremely
imbalanced distribution (e.g., the frequency of <div> tag is much
higher than that of other tags. ), separating structural and functional
embeddings of tags allows for shared learning for the structural
embedding of each tag, thus better modeling the structure of HTML.

Tag Embedding. There are approximately 120 common HTML
tags, which can be classified according to their functions. Under-
standing the function of each tag helps to better interpret web
content. Furthermore, each common tag has a textual description
corresponding to its function, which can effectively aid the model
in understanding the tag’s purpose. Thus We employ sentence-

Transformers 2 to extract an embedding vector from each tag’s
textual description 3 as the tag’s initial embedding. For infrequent
tags, we convert them to <unk> and initialize it randomly.

The final text embedding from HTML is the sum of four em-
beddings. Token embedding and 1D positional embedding repre-
sents the token and its index. Tag embedding represents the func-
tion of the token’s corresponding HTML tag. For each token 𝑤𝑖

from either structure input or content input, we incorporate the
tag embedding based on the tag type of their respective nodes
𝑡𝑎𝑔𝑖 ∈ {<html>, body, <div>, ...}in the DOM tree. Besides, we use
segment embedding to distinguish structure and text content tokens
by assigning each token to a segment 𝑠𝑒𝑔𝑖 ∈ {[S], [C]}, Formally,
we have the 𝑖-th text embedding for a token𝑤𝑖 :

t𝑖 = TokEmb(𝑤𝑖 ) +TagEmb(𝑡𝑎𝑔𝑖 ) +PosEmb1D(𝑖) +SegEmb(𝑠𝑒𝑔𝑖 ) .

Image Embedding. WebLM employs a ResNeXt-FPN [25, 36] ar-
chitecture as the backbone of the visual encoder. Given a webpage
screenshot I, it is resized to 224 × 224 and fed into the visual back-
bone. Then WebLM extracts the corresponding visual feature for
all the nodes on the HTML DOM tree. Specifically, while object
detection models perform pooling on RoI (Regions of Interest) [16],
WebLM conducts pooling on RoS (Regions of Structure nodes on
the DOM tree) according to the visual alignment information of

2https://www.sbert.net/
3https://www.w3schools.com/tags/default.asp
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each node. After obtaining the image embeddings for each node
on the DOM tree, we perform visual align by aligning the node
visual feature sequence with the input token sequence based on
the correspondence between token and node, allowing each token
to obtain its associated visual features. The image embedding of
𝑖-th token with the corresponding node 𝑛𝑖 is formulated as

v𝑖𝑚𝑔

𝑖
= RoSPool(VisualEncoder(I))𝑛𝑖

2D Position Embedding. The image feature extracted by the vi-
sual encoder primarily contains style information, such as color,
and font. In addition, we input the bounding box of the node region
to embed spatial layout information. Following previous works
[38], we normalize and discretize all coordinates to integers in
the range [0, 1000], and use two embedding layers to embed x-
axis features and y-axis features separately. Given the 𝑖-th token
and the normalized bounding box of its corresponding node 𝑛𝑖
box𝑛𝑖 = (𝑥0, 𝑥1, 𝑦0, 𝑦1,𝑤, ℎ), we calculate the 2D position embed-
ding by concatenating six bounding box features and aligning it to
𝑖-th token:

v𝑏𝑜𝑥𝑖 = Concat(PosEmb2Dx (𝑥0, 𝑥1,𝑤), PosEmb2Dy (𝑦0, 𝑦1, ℎ))

The final visual embedding of the 𝑖-th token is the sum of its
image embedding and 2D position embedding

v𝑖 = v𝑖𝑚𝑔

𝑖
+ v𝑏𝑜𝑥𝑖 ,

and we obtain the final input embedding x𝑖 of the 𝑖-th token by
adding its text embedding t𝑖 and visual embedding v𝑖 .

3.3 Pre-training Objectives
To efficiently model the complex structure of webpages and en-
hance the information exchange among the three modalities, We
design three self-supervised pre-training tasks for WebLM, includ-
ing mixed-modality MLM and cross-modality TSP and VMD tasks.

Masked LanguageModeling (MLM). Following previousworks
[8, 37], we use MLM to enhance the model’s language understand-
ing capabilities. We randomly replace some content tokens with
[MASK] and require the model to predict the original words. Unlike
the Masked Visual-Language Modeling in LayoutLMv2 [38], we do
not mask the corresponding regions of tokens in the image due to
the unavailability of token-level region positions.

Tree Structure Prediction (TSP). We propose the TSP task
based on the following two observations:

• While the structural separation facilitates intra-modality
information flow, it slows down cross-modality information
flow between structure and content modalities.

• The tree structure of HTML explicitly conveys the main
semantic structure of both textual and visual inputs.

Thus the TSP task requires WebLM to predict the tree relationship
between structure and content inputs to accelerate cross-modality
information flow as well as modeling the semantic structure of
webpages. Specifically, we sample a node token from the struc-
tural input and a text token from the content input, requiring the
model to determine their relationship based on the DOM Tree 𝑅 ∈ {
parent-child, ancestor-descendent, other-relations}. In ad-
dition, text tokens within the tree solely constitute leaf nodes, yet

their quantity far surpasses that of structural nodes. Structural sep-
aration helps TSP to sample more diverse tree node pairs while
simplifying the implementation via complex sampling algorithms.

Visual Misalignment Detection (VMD). As we described in
sec 3.1, visual alignment between HTML nodes and screenshot
regions is the key to constructing the multimodal input sequence
of WebLM. Due to rendering issues or external interference, such
alignment might introduce noise, potentially impacting the model’s
performance. Therefore, the TIM task is proposed to enhance the
visual robustness. Specifically, we randomly sample some positions
from the input sequence (including both structural and content
inputs) and add noise to their corresponding visual feature regions,
either enlarging or reducing them by 50%. The model is then asked
to identify if the image information at each token has been affected
by noise. This perturbing simultaneously alters both the 2D po-
sition embedding and image embedding, requiring the model to
make judgments based on the textual modality or the semantic
relationships between with surrounding tokens.

4 EXPERIMENTS
WebLM focuses on webpage understanding through multimodal
pre-training. Therefore, we evaluate it on web-based question an-
swering and information extraction tasks and further investigate
the importance of each component through ablation studies.

4.1 Data
4.1.1 Pre-training Data.

CommonCrawl. CommonCrawl is a publicly availableweb crawl
dataset that collects webpages from the internet. Instead of using
the source code, we collect webpage links from Common Crawl.
We traverse all links in a dataset snapshot 4 and categorize and
sort them based on the domain name. We select 60,000 domains
with the largest number of webpages, with each domain containing
100 webpages. We also use fasttext [20] to filter out non-English
pages with an English classification score < 0.6. We then employ
Selenium 5 to crawl the corresponding HTML, webpage screen-
shots, and bounding box information for each HTML node. Finally,
we obtain a dataset of 6 million webpages for WebLM pre-training.

Pre-processing. Due to a large number of textual tokens of real-
world webpages and the typically long screenshots, it is challenging
to input entire webpages into the model for pre-training. Conse-
quently, we construct pre-training features mainly through two
approaches: simplifying the HTML input and extracting input seg-
ments from complete webpages. We only retain nodes on the HTML
rendering tree that either contain text or have corresponding re-
gions in the image, while removing nodes that do not have either
(e.g., <script>, <style>, etc.). Furthermore, we simplify the HTML
structure by replacing a node with its child node if it has only one
child. After these modifications, we traverse the HTML tree and
search for nodes whose total number of tokens in their child nodes
and text lies within a certain range (i.e., between 128 and 512.) as
input features. By extracting the corresponding screenshot area
and HTML code segment, we construct features that meet input

4https://commoncrawl.org/2022/08/august-2022-crawl-archive-now-available/
5https://www.selenium.dev/
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Table 1: Evaluation results on WebSRC. EM, F1, POS denotes the exact match score, the token level F1 score, and the path
overlap score, respectively. We submit the models to the official of WebSRC for testing. * denotes reproduction results.

Method Modalities Dev Test
EM↑ F1↑ POS↑ EM↑ F1↑ POS↑

BA
SE

T-PLM(BERT) [4] Text 52.12 61.57 79.74 39.28 49.49 67.68
H-PLM(BERT) [4] Text + HTML 61.51 67.04 82.97 52.61 59.88 76.13
V-PLM(BERT) [4] Text + HTML + Image 62.07 66.66 83.64 52.84 60.80 76.39
DOM-LM [7] Text + HTML 69.70 73.90 - - - -

LayoutLMv3∗ [17] Text + Image 66.33 71.46 85.27 48.33 51.64 71.02
MarkupLM [21] Text + HTML 68.39 74.47 87.93 - - -
MarkupLM∗ Text + HTML 68.99 74.55 88.40 60.43 67.05 80.55
WebLM Text + HTML + Image 72.14 79.67 89.36 65.95 72.30 83.77

LA
RG

E

T-PLM(Electra) [4] Text 61.67 69.85 84.15 56.32 72.35 79.18
H-PLM(Electra) [4] Text + HTML 70.12 74.14 86.33 66.29 72.71 83.17
V-PLM(Electra) [4] Text + HTML + Image 73.22 76.16 87.06 68.07 75.25 84.96
LayoutLMv3∗ [17] Text + Image 71.38 75.73 87.74 57.68 63.33 79.76
MarkupLM [21] Text + HTML 74.43 80.54 90.15 - - -
MarkupLM∗ Text + HTML 73.38 79.83 89.93 69.09 76.45 87.24
WebLM Text + HTML + Image 78.40 84.24 91.54 72.01 78.66 88.33

length constraints. Additionally, if combined sibling nodes satisfy
the input length limits, we also use their corresponding HTML code
segments and largest bounding box screenshots as input features.

4.1.2 Fine-tuning Data.

WebSRC. WebSRC [4] is a Web-based Structural Reading Com-
prehension dataset that aims to test the ability of models to under-
stand the contents of webpages as well as their structures. WebSRC
consists of 400K question-answer pairs, which are collected from
6.4K webpages. Each question in WebSRC requires a certain struc-
tural understanding of a webpage to answer, and the answer is
either a text span on the webpage or yes/no. Following the original
paper, we use Exact match (EM), F1 score (F1), and Path overlap
score (POS) as evaluation metrics.

SWDE. The StructuredWeb Data Extraction (SWDE) [14] dataset
is a real-world collection of webpages used for automatic informa-
tion extraction. It consists of 8 verticals, 80 websites (10 per vertical),
and 124,291 webpages in total. The goal is to extract values corre-
sponding to given attributes from a webpage, such as the price value
in shopping pages. We use page-level F1 scores as our evaluation
metric as in previous works [21, 24, 41]. We follow MarkupLM to
train and evaluate each vertical independently. In each vertical,
we select 𝑘 consecutive seed websites for training and use the re-
maining 10 − 𝑘 websites for testing. The final results are obtained
by averaging across all 8 verticals and all 10 permutations of seed
websites per vertical, resulting in 80 experiments for each 𝑘 .

4.2 Experiment Setup
Pre-training. The token-masked probability in MLM and visually

noise-adding probability in VMD are both 15%. The probability
of the bounding box increasing or decreasing in size is each 50%.
The max number of selected node pairs is 1,000 in TSP for each
sample, and we limit the ratio of pairs with other-relations as

60% to make a balance. We initialize WebLM from RoBERTa and
train the base and large model for 300K steps on 8 NVIDIA A10 and
A100 GPUs, respectively. For the ResNeXt-FPN part in the visual
embedding layer, the backbone of a Mask-RCNN [15] model trained
on PubLayNet [40] is leveraged 6. We set the total batch size as 256,
the learning rate as 5e-5, the max sequence length as 512, and the
warmup ratio as 0.1. The selected optimizer is AdamW [28], with
𝜖 = 1𝑒 − 6, 𝛽1 = 0.9, 𝛽2 = 0.98, weight decay = 0.01, and a linear
decay learning rate scheduler with 6% warmup steps. We also apply
FP16 to reduce GPU memory consumption and accelerate training.

Fine-tuning. We treat the WebSRC task and SWDE task as an
extractive QA task and token classification task, respectively. In
the input layer, we truncate any structural tokens exceeding a
fixed length and concatenate the HTML text and the question as
the content input. When the content length surpasses the limit, a
sliding window mechanism is employed for multiple inputs. For
separators such as [CLS] and [SEP], as well as question tokens, we
consider them to be directly connected to the <html> node. For
WebSRC, we fine-tune WebLM for 2 epochs with a total batch size
of 64 and a learning rate of 1e-5. For SWDE, we fine-tune WebLM
with 10 epochs, a total batch size of 64, and a learning rate of 2e-5.
The warmup ratio is set to 0.1 and the max sequence length is set as
512 in both tasks, and we keep other hyper-parameters as default.

4.3 Baselines
We only introduce the SOTA pretrained models here and refer
readers to [4, 41] for more details above non-pretrained baselines:
DOM-LM. DOM-LM[7] is an HTML-based pre-trained model that
takes text tokens and several HTML DOM tree features as inputs,
such as depth, tag type, and node index.

6“MaskRCNN ResNeXt101 32x8d FPN 3X” setting in https://github.com/hpanwar08
/detectron2
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Figure 4: The performance comparison on different types of
websites of WebSRC development set.

Table 2: Results on SWDE using different numbers of seed
sites 𝑘 = {1, 2, 3, 4, 5}. The baseline results are from [41].

Model \ #Seed Sites 𝑘 = 1 𝑘 = 2 𝑘 = 3 𝑘 = 4 𝑘 = 5

SSM [3] 63.00 64.50 69.20 71.90 74.10
Render-Full [14] 84.30 86.00 86.80 88.40 88.60
FreeDOM-NL [24] 72.52 81.33 86.44 88.55 90.28
FreeDOM-Full [24] 82.32 86.36 90.49 91.29 92.56

SimpDOM [41] 83.06 88.96 91.63 92.84 93.75

MarkupLMBASE 82.11 91.29 94.42 95.31 95.89
WebLMBASE 84.21 93.17 95.68 96.17 96.78

MarkupLMLARGE 85.71 93.57 96.12 96.71 97.37
WebLMLARGE 87.57 94.89 97.25 97.54 98.10

LayoutLMv3. LayoutLMv3[17] is a multimodal pre-trained model
for document understanding. It simplifies LayoutLMv2[38] by using
patch embeddings (as in ViT) instead of leveraging a CNN backbone.
LayoutLMv3 exhibits a general capacity for visual understanding
while having a modest performance on textual modeling.
MarkupLM.MarkupLM[21] is a SOTA webpage pre-trained model
which only inputs the text token sequence of HTML code and incor-
porates the xpath of each text’s node as supplementary information.
Instead of explicitly modeling the structure of HTML, it regards
the tree relationship of node pairs as a type of relation embedding
between text tokens. Consequently, MarkupLM achieves the best
text-understanding abilities among all models.

4.4 Main Results
As shown in Table 1, both base and large versions of our proposed
WebLM significantly outperform all baseline models on WebSRC
dataset. Compared to MarkupLM, WebLM still exhibits substantial
performance improvements. This demonstrates that WebLM can ef-
fectively utilize the information from all three modalities, achieving
a better understanding of both webpage structure and textual con-
tent. Additionally, although LayoutLMv3 is not pre-trained on web
data, it still exhibits good performance on the dev set, highlighting
the importance of visual modality. However, its lower performance
on the test set indicates a weaker generalization ability, emphasizing
the necessity of pre-training on web data.

Table 3: Ablation study of pre-training tasks on WebSRC dev
set.

Pre-training Data Objectives Metrics

Samples MLM TSP TIM EM F1 POS

1M ✓ 64.17 72.13 86.33
1M ✓ ✓ 66.99 74.92 87.78
1M ✓ ✓ ✓ 67.43 76.93 88.60

6M ✓ ✓ ✓ 72.14 79.67 89.36

We further compare the model performance on different types of
websites as shown in Figure 4. KV-type websites emphasize the com-
prehension of textual semantics, whereas Compare and Table-type
websites underscore the significance of webpage sematic structure.
We find that WebLM demonstrates a dual proficiency encompass-
ing strong textual comprehension and better webpage structure
modeling. Especially in visually complex webpages, i.e., Compare
and Table-type websites, WebLM significantly outperforms the
other two models. This success further demonstrates the necessity
and effectiveness of introducing the hierarchical visual feature.

The results for the SWDE dataset are shown in Table 2. Since the
SWDE dataset was created earlier, many webpages in the dataset
do not contain visual information such as CSS and screenshots.
Therefore, we render the HTML files in a browser to generate corre-
sponding screenshots, which introduces a considerable amount of
noise. Nevertheless, from the experimental results, we can observe
that both the base and large models of our WebLM outperform
MarkupLM. The performance improvement is more pronounced
when the training data is limited, i.e., when k is small. This demon-
strates that WebLM possesses robustness to visual information
noise, maintaining a good webpage understanding capability even
in noisy environments.

4.5 Ablation Study
4.5.1 Pre-training Tasks. The ablation results of pre-training tasks
are shown in Table 3. We found that both TSP and VMD, two
pre-training tasks focusing on inter-modal interactions, signifi-
cantly contribute to the model’s performance. When removing the
TSP task, which focuses on the interaction between structure and
content modalities, WebLM’s performance loss is greater, with a
decrease of 2.8 points in both the EM score and F1 score, demon-
strating that modeling HTML structure can better help the model
understand web content. The VMD task enhances model perfor-
mance by strengthening the interaction between text and image
modalities. Furthermore, ourWebLM pre-trained with just 1 million
webpages performs on par with the MarkupLM model trained with
24 million webpages, which demonstrates the efficient utilization
of our high-quality datasets.

4.5.2 Visual Features. The ablation study results of different vi-
sual embeddings are shown in Table 4. We find that both Image
embedding and 2D position embedding have a strong impact on the
model’s performance. When these two features are removed, the
model’s performance experiences a sharp decline. Moreover, Im-
age embedding has a greater influence on predicting the EM score,
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Figure 5: Relative performance onWebSRCDev set compared
to full-structuredmethods after truncatingHTML structures.

Table 4: Ablation study of visual embeddings on theWebSRC
dev set.

Method EM↑ F1↑ POS↑
WebLMBASE+MLM&TSP 66.99 74.92 87.78
-w/o Image Embedding 60.56(-6.43) 71.77(-3.15) 85.81(-1.97)
-w/o 2D Position Embedding 62.91(-4.08) 70.18(-4.74) 84.22(-3.56)
-w/o Visual Embedding 58.52(-8.47) 71.13(-3.79) 84.54(-3.24)

Figure 6: Experimental results on the WebSRC dev set while
introducing different levels of visual noise in VMD.

while 2D position embedding has a more significant impact on pre-
dicting the F1 score. When both features are removed, the task’s EM
score experiences a more substantial decrease. This demonstrates
the importance of visual features and further confirms WebLM’s
ability to effectively incorporate and utilize visual features.

4.5.3 Hierarchically Visual Structure. While previous work can also
obtain features of each sub-region within an image, our method
uniquely leverages the HTML structure to hierarchically combine
these sub-region features. This generation of visual features is an
attribute absent in prior studies. We also demonstrate its effec-
tiveness with additional experiments. As shown in Figure 5, we
truncate HTML non-leaf nodes that are below a specific depth (-
25% signifies truncating those nodes that are less than 25% of the
maximum depth). This approach allows for the preservation of
all fine-grained visual information in the image while eliminating
hierarchical visual features of other granularities. Our experiments
demonstrate that even with the inclusion of visual information
from images, there is a substantial decline in model performance if
the incorporation of HTML structure is omitted.

4.5.4 Tree Structure Prediction. We also observe the contribution
of different parts of the WebLM input to the prediction of HTML

Table 5: Ablation study of different input features on Tree
Structure Prediction.

Method TSP Accuracy

WebLMBASE 99.44
-w/o closing tag 96.54
-w/o closing tag & tag order 95.38
-w/o visual feature 90.18
-w/o visual feature & closing tag & tag order 72.38

structure. By setting aside a portion of the test data, we tested the
accuracy of the TSP task on this test set after training themodel with
different settings for 10,000 steps. "W/o Closing tag" refers to the
situation where we have removed all closing tags from the HTML
structure tokens. "w/o tag order" refers to the condition where,
after removing these closing tags, we shuffle all structure nodes
for input. These two ablation experiments are designed to observe
how the model predicts the DOM Tree structure using the HTML
structure input. Our results in Table 5 show that different features
all contribute to predicting HTML structure and complement each
other. Notably, visual feature plays a crucial role in modeling HTML
structure as shown in the table.

4.6 Impact of Various Noise Levels in VMD
Figure 6 shows the impact of the VMD pre-training task when
different levels of noise are applied to the images. Our results show
that the model performs best when the noise is either enlarging or
reducing the image region by 50%. We believe that when the noise
is too small, it does not help the model to learn the robustness of
visual information and alignment of visual and textual information,
whereas when the noise is too large, it interferes with the model’s
understanding and learning of visual features.

5 CONCLUSION
In this work, we address the automated webpage understanding
and information extraction by incorporating hierarchical visual in-
formation through multimodal pre-training. We primarily leverage
the structured correspondence between HTML code and corre-
sponding webpage screenshots to construct input for WebLM and
perform information fusion across different modalities by devising
pre-training tasks. Extensive experiments demonstrate the effective-
ness of the proposed architecture, and subsequent ablation studies
further highlight the importance of visual information in the pro-
cess of webpage understanding. In the future, we plan to apply the
WebLM to scanned/digital-born documents. By conducting auto-
mated analysis and structure construction on these documents, we
aim to address the hierarchical alignment problem between image
and text modalities in such document scenarios.
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