
OSWORLD: Benchmarking Multimodal Agents for
Open-Ended Tasks in Real Computer Environments

Tianbao Xie♠ Danyang Zhang♠ Jixuan Chen♠ Xiaochuan Li♠ Siheng Zhao♠
Ruisheng Cao♠ Toh Jing Hua♠ Zhoujun Cheng♠ Dongchan Shin♠ Fangyu Lei♠ Yitao Liu♠

Yiheng Xu♠ Shuyan Zhou♣ Silvio Savarese♡ Caiming Xiong♡ Victor Zhong♢ Tao Yu♠
♠The University of Hong Kong ♣CMU ♡Salesforce Research ♢University of Waterloo

Abstract

Autonomous agents that accomplish complex computer tasks with minimal human
interventions have the potential to transform human-computer interaction, signif-
icantly enhancing accessibility and productivity. However, existing benchmarks
either lack an interactive environment or are limited to environments specific to
certain applications or domains, failing to reflect the diverse and complex na-
ture of real-world computer use, thereby limiting the scope of tasks and agent
scalability. To address this issue, we introduce OSWORLD, the first-of-its-kind
scalable, real computer environment for multimodal agents, supporting task setup,
execution-based evaluation, and interactive learning across various operating sys-
tems such as Ubuntu, Windows, and macOS. OSWORLD can serve as a unified,
integrated computer environment for assessing open-ended computer tasks that
involve arbitrary applications. Building upon OSWORLD, we create a benchmark
of 369 computer tasks involving real web and desktop apps in open domains, OS
file I/O, and workflows spanning multiple applications. Each task example is
derived from real-world computer use cases and includes a detailed initial state
setup configuration and a custom execution-based evaluation script for reliable,
reproducible evaluation. Extensive evaluation of state-of-the-art LLM/VLM-based
agents on OSWORLD reveals significant deficiencies in their ability to serve as
computer assistants. While humans can accomplish over 72.36% of the tasks, the
best model achieves only 12.24% success, primarily struggling with GUI grounding
and operational knowledge. Comprehensive analysis using OSWORLD provides
valuable insights for developing multimodal generalist agents that were not possible
with previous benchmarks. Our code, environment, baseline models, and data are
publicly available at https://os-world.github.io.

1 Introduction
Humans interact with computers to perform essential tasks in the digital realm, including web brows-
ing, video editing, file management, data analysis, and software development. These task workflows
often involve multiple applications through graphical user interfaces (GUI) and command line inter-
faces (CLI). Autonomous digital agents, powered by advancements in large vision-language models
(VLMs), have the potential to revolutionize how we interact with computer environments [28, 44, 1].
By following high-level natural language instructions, these agents can make digital interactions
more accessible and vastly increase human productivity. However, a major challenge in developing
such multimodal agents is the absence of a benchmark based on a real interactive environment that
covers the diversity and complexity of real-world computer use across various operating systems,
interfaces, and applications, consequently restricting task scope and agent scalability.

Previous benchmarks provide datasets of demonstrations without executable environments [9, 40,
21]. Their non-execution-based evaluation assumes a single solution for each task and wrongfully
penalizes alternative correct solutions. These benchmarks also miss opportunities for essential

Preprint. Under review.

ar
X

iv
:2

40
4.

07
97

2v
2

 [
cs

.A
I]

 3
0

M
ay

 2
02

4

https://os-world.github.io

Task Instruction
(See examples above)

input Agent
(e.g., GPT-4V)

a11y-treescreenshot

keyboardmouse

Action

Observation

input

predict

OSWorld Environment
InterfacesOS

Task instruction 2: ...some details about snake game omitted… Could you help me tweak the code so the snake can actually eat the food?

Task instruction 1: Update the bookkeeping sheet with my recent transactions over the past few days in the provided folder.

Arbitrary Apps

Task Initial State Setup Config task initial env state setup

Final State

get env state

Execution-based
Evaluation

Virtual Machine(s)

Figure 1: OSWORLD is a first-of-its-kind scalable, real computer environment for multimodal agents,
supporting task setup, execution-based evaluation, and interactive learning across operating systems.
It can serve as a unified environment for evaluating open-ended computer tasks that involve arbitrary
apps (e.g., task examples in the above Fig). We also create a benchmark of 369 real-world computer
tasks in OSWORLD with reliable, reproducible setup and evaluation scripts.

agent development methods like interactive learning and real-world exploration. Building realistic
interactive environments is a major challenge in developing multimodal agents. Prior work that
introduce executable environments simplify the observation and action spaces of human-computer
interaction and limit task scope within specific applications or domains, such as web navigation in
a few domains [44, 30, 58, 66], coding [57] and the combination [32, 54, 34]. Agents developed in
these restricted environments cannot comprehensively cover computer tasks, lacking the support of
evaluating tasks in complex, real-world scenarios that require navigating between applications and
interfaces in open domains (task examples in e.g., Fig. 1).

To address this gap, we introduce OSWORLD, the first-of-its-kind scalable, real computer environment
designed for the development of multimodal agents capable of executing a wide range of real
computer tasks beyond isolated interfaces and applications. This executable environment allows
free-form raw keyboard and mouse control of real computer applications and supports initial task
state configuration, execution-based evaluation, and interactive learning across mainstream operating
systems (e.g., Ubuntu, Windows, macOS). As shown in Fig. 1, OSWORLD enables evaluation
of open-ended computer tasks that involve arbitrary applications, ranging from image viewing to
software functionality integration and programming. Thus, OSWORLD can serve as a unified,
real computer environment that allows users to define their agent tasks without the need to build
application/domain-specific simulated environments.

Building upon OSWORLD, we create a benchmark with 369 real-world computer tasks that involve
widely-used web and desktop apps in open domains, OS file I/O, and multi-app workflows through
both GUI and CLI. Each task example is based on real-world computer use cases experienced by real
users and often requires interactions with multiple applications and interfaces. To ensure reliable,
reproducible assessment within the OSWORLD environment, 9 authors with computer science
backgrounds carefully annotate each example with an initial state setup configuration to simulate
human work in progress and a custom execution-based evaluation script to verify task completion.
Our benchmark has a total of 134 unique evaluation functions, which are orders of magnitude larger
than prior work [66], showcasing the complexity, diversity, and evaluation challenges of tasks in our
benchmark. The human performance study indicates that task examples from OSWORLD are more
time-consuming and challenging compared to those in prior work.

We extensively evaluate state-of-the-art LLM and VLM-based agent baselines, including the GPT-4V
series [39], the Gemini series [49, 41], the Claude-3 Opus [3] and the Qwen-Max [5], as well as
Mixtral [19], Llama-3 [35] and CogAgent [17] from the open-source community. The performance
of these experiments ranges from 0.99% to 12.24%, with subsets of applications even reaching 0%,

2

for workflow tasks that involve cooperation from multiple apps, the highest performance of the
baseline agent is only 6.57%. This indicates that current LLMs and VLMs are far from capable of
serving as computer assistants (§4.2). Results also show that while additional knowledge such as the
accessibility tree and Set-of-Mark (§4.1) can be helpful, it can also lead to potential misguidance and
varies across models. We also observe performance changes in these agents compared to consistent
human performance across different types of computer tasks. Analysis reveals that VLM-based
agents struggle to ground on screenshots to predict precise coordinates for actions, tend to predict
repetitive actions, are unable to handle noise from unexpected application windows and exhibit limited
knowledge of basic GUI interactions and domain-specific features of apps (§5.2, §5.4). Feeding
higher resolution and more trajectory history can help improve the performance by even doubling
while requiring longer context length and efficient modeling (§5.2). We open-source OSWORLD
environment and benchmark, including environment initial state setup, reliable evaluation scripts,
documentation, and our implementation of baseline models to promote research towards the goal of
generalist capable computer agents 1. Future work can focus on enhancing VLM GUI grounding
abilities, including interaction commonsense knowledge, higher-resolution support, and coordinates
accuracy for more robust GUI interactions. Additionally, efforts can be made to improve agent
architectures to better handle complex computer tasks through exploration, memory, and reflection.

2 OSWORLD Environment

In this section, we will introduce the task definition of autonomous agents, the components and
implementation of the OSWORLD environment, and the supported observation and action spaces.

2.1 Task Definition

An autonomous digital agent task can be formalized as a partially observable Markov decision
process (POMDP) (S,O,A, T ,R) with state space S , observation space O (§2.3, including natural
language I), action space A (§2.4), transition function T : S × A → S, and reward function
R : S ×A → R. Given current observation ot ∈ O (a natural language instruction observation and a
screenshot observation (e.g., computer screenshot), accessibility (a11y) tree, or their combination
according to facilities available), an agent generates executable action at ∈ A (e.g., clicking on the
certain pixel of the screen — .click(300, 540, button=‘right’), press key combination —
.hotkey(‘ctrl’, ‘alt’, ‘t’)), which results in a new state st+1 ∈ S (e.g., current Desktop
environment) and a new partial observation ot+1 ∈ O (e.g., current screenshot). The interaction loop
repeats until an action that marks termination (DONE or FAIL, see Sec. 2.4) is generated or the agent
reaches the max number of steps (e.g., 15 in our experiments). In this version of OSWORLD, we
implement an execution-based reward function R : S × A → [0, 1] (§2.2.3). The reward function
awards a value of 1 or a positive decimal under 1 at the final step if the state transitions meet the
expectations of the task objective (i.e., the goal is successfully achieved or partially achieved), or if
the agent accurately predicts failure for an infeasible task. In all other scenarios, it returns 0.

2.2 Real Computer Environment Infrastructure

OSWORLD is an executable and controllable environment that supports task initialization, execution-
based evaluation, and interactive agent learning in a range of real operating systems (e.g., Ubuntu,
Windows, macOS) using virtual machine techniques, shown in the middle and right of Fig. 2.
Virtual machine offers a safe isolated environment and prevents the agent resulting in irreversible
damaging effect on the real host machine. The snapshot feature also enables efficient reset of
the virtual environment. The environment is configured through a config file (shown in the left
of Fig. 2) for interface initialization during the initialization phase (including downloading files,
opening software, adjusting interface layout) (§2.2.2, highlighted with red in Fig. 2), post-processing
during the evaluation phase (activating certain windows, saving some files for easy retrieval of
information, highlighted with orange), and acquiring files and information for evaluation (such as
the final spreadsheet file for spreadsheet tasks, cookies for Chrome tasks, highlighted with yellow in
Fig. 2), as well as the evaluation functions and parameters used (§2.2.3, highlighted with green in
Fig. 2). See App. A.1 for more details.

1https://os-world.github.io

3

https://os-world.github.io

Virtual Machine
Control Receiver

Virtual Machine Platform

Task
Manager

Setup
Interpreter

Evaluation
Interpreter

Simulator

screen capture
accessibility tree

Getter

Metrics

Set-up

Virtual Machine
Control Receiver

VM 1

…

Agent

Coordinator

Reward

Config

by executing eval scripts

vmrun commands,
Flask commands

status, files, infos…

{ "instruction": "Please update my bookkeeping sheet with
the recent transactions from the provided folder, detailing
my expenses over the past few days.",

"config": [{"type": "download",
"parameters": {"files": [

{"path": "/home/user/Desktop/my_bookkeeping.xlsx",
"url": "https://drive.google.com/uc?id=xxxx"},

{"path": "/home/user/Desktop/receipt_0.jpeg",
"url": "https://drive.google.com/uc?id=xxxx"},…]}},

{"type": "open",
"parameters": { "path":

"/home/user/Desktop/my_bookkeeping.xlsx"}}],
"evaluator": {"postconfig": [{"type": "activate_window",

"parameters": {"window_name": "my_bookkeeping.xlsx -
LibreOffice Calc",...],

"result": {"type": "vm_file",
"path": "/home/user/Desktop/my_bookkeeping.xlsx",
"dest": "my_bookkeeping.xlsx"},

"expected": {"type": "cloud_file",
"path": "https://drive.google.com/uc?id=xxx",
"dest": "my_bookkeeping_gold.xlsx" },

"func": "compare_table",
"options": {

"rules": [{
"type": "sheet_fuzzy",
"sheet_idx0": "RNSheet1",
"sheet_idx1": "ENSheet1",
"rules": [{"range": ["A1:A8",... }]}]

}

observations

actions

VM
Postprocess

Virtual Machine
Controller

Figure 2: Overview of the OSWORLD environment infrastructure. The environment uses a configu-
ration file for initializing tasks (highlighted in red), agent interaction, post-processing upon agent
completion (highlighted in orange), retrieving files and information (highlighted in yellow), and
executing the evaluation function (highlighted in green). Environments can run in parallel on a single
host machine for learning or evaluation purposes. Headless operation is supported.

2.2.1 Overview
OSWORLD environment runs on the host machine. Its Coordinator accepts a configuration file
at the initialization of a computer task, runs commands to automatically create a virtual machine
instance, and initializes the required state for the task through the Task Manager. The configuration
file specifies the snapshot of the virtual machine to be used (which stores the complete state of a
computer at a certain moment and can be restored to this state at any time) and also indicates the
information needed for setup (such as downloading files and opening some software, making some
additional settings, etc.). Once the environment is set up, agents start to interact with the environment,
receiving observations such as screenshots, the accessibility (a11y) tree, and customized streams such
as terminal outputs. Agents subsequently generate executable actions (e.g., .click(300, 540))
that manipulate the keyboard and mouse. Each action of the agent is input into the environment
as a code string, and the environment’s Simulator executes them in the virtual machine. After the
completion of a task, the Task Manager performs post-processing (such as file saving, or reopening
certain apps) according to the task’s post-config, retrieves data to the host machine (fetching images
or configuration files from the virtual machine or cloud, etc.), and then runs evaluation scripts to
assess the completion of the task. Multiple virtual machines can run simultaneously on a single host
machine, thereby parallelizing training and evaluation.

2.2.2 Initial Task Environment Setup

Many real-world scenarios requiring assistance occur not at the beginning of digital activities, such
as right after launching an application or when a computer has just been started, but rather at
intermediate stages, such as when certain software is already open or the computer has experienced a
crash. Therefore, we aim to simulate these intermediate states as closely as possible to replicate real-
world scenarios. The naturalness we bring in also leads to more challenges for agents to model and
explore. We adopted a hybrid approach for configuration instead of solely relying on example-wise
snapshots for restoration since it would store much unnecessary hardware state information, resulting
in each example requiring gigabytes of space. The procedure is divided into three stages: start the
VM emulator, prepare files (download the files or scripts from the cloud, etc. optional), and execute
reprocessing commands (open files or tabs, change the window size, etc. optional). We provide
convenient APIs to configure initial conditions and world settings, standardizing our tasks to make
this process user-friendly and easily extendable for scaling. For more details on setup see App. B.5.

2.2.3 Execution-Based Evaluation

Evaluating the successful execution of general computer tasks presents a significant challenge, as these
tasks defy reduction to a uniform pattern or measurement by a single metric. To ensure a thorough
assessment, we design example-specific evaluation metrics including pre-setup, post-processing, and

4

Table 1: Examples of our annotated evaluation scripts, which involve retrieving data from configura-
tion files, the environment, and the cloud, and executing functions to assess functional correctness and
obtain results. The example-wise evaluation facilitates the diversity of tasks and reliable evaluation
of complex, real-world, open-ended tasks.

Initial State Task Instruction Evaluation Script (Simplified)

Can you help me clean up my com-
puter by getting rid of all the cook-
ies that Amazon might have saved?

cookie_data = get_cookie_data(env)
rule = {"type":"domains",
"domains":[".amazon.com"]}
is_cookie_deleted(cookie_data, rule)

Rename “Sheet 1” to “LARS Re-
sources”. Then make a copy of
it. Place the copy before “Sheet
2” and rename it by appending a
suffix “(Backup)”, ...

result = get_file(env)
expected = get_file(cloud)
rules = [{"type":"sheet_name"},

{"type":"sheet_data",
"sheet_idx0":0,
"sheet_idx1":1}...]

compare_table(result, expected, rules)

I’ve drafted an e-mail reminder
for those who haven’t paid tuition.
Please help me to check out their e-
mails from the payment record and
add to the receiver field.

tree = get_a11y_tree(env)
rules = [{"selectors":

["tool-bar[attr|id=MsgHeadersToolbar]
label[name=To]
[attr|class=\"address-pill\"]>
label[attr|class=\"pill-label\"]
[name*=\"fox@someuniversity.edu...]

check_a11y_tree(tree, rules)

dedicated functions, tailored to the software in use and the task’s specific requirements. This involves
interpreting the software’s internal files, utilizing specific packages, and preemptively setting up
scaffolding based on the software’s permissions (e.g., opening remote debugging ports for Chrome
and VLC, creating extensions for VS Code). Occasionally, this process may also require assistance
from reverse engineering tools, such as for decrypting account information in Thunderbird.

As a result, we construct a vast collection of functions that make final wrangling and retrieve files
and data information of varying types, categories, and granularities from the cloud and software from
virtual machines as well as evaluation functions covering different aspects and their combinations,
inputting this information as parameters to assess the outcomes. We show some evaluation examples
in Tab. 1. , demonstrate the retrieval of cookie data from virtual machines, obtaining files from both
virtual machines and cloud services, fetching the current runtime interface’s accessibility tree from
the virtual machines, and determining success based on this information whether Amazon’s cookies
have been deleted, whether the generated table is accurate, and whether the correct interface has
been accessed. Need to note when the type of task has real-time characteristics (such as the number
of citations of someone’s paper, the content of blogs, etc.), we include dynamic functions (such as
crawler scripts) inside getter to obtain the real-time values at the moment of evaluation and then use
them to compare with the results obtained by the agent upon task completion. See more in App. B.6.

2.3 Observation Space

The observation space in OSWORLD contains a complete screenshot of the desktop screen,
including the mouse’s position and shape, various application windows, files, and folders that are
opened in different sizes and orders, maintaining the same perception as a human. Also, to be
aligned with previous agent-building web and mobile research [30, 27, 9, 66] that provide and support
the use of the webpage’s DOM and app’s view hierarchy, OSWORLD also provides XML-format
accessibility (a11y) tree (obtained via ATSPI 2 on Ubuntu, via PyWinAuto on Windows, etc.), which
can support additional information for modeling. These raw observations allow rich interactions
between multiple applications but induce challenges in long-horizon decision-making from high-
resolution images (e.g., 4k screenshots) and structured long text (e.g., accessibility trees). For more
detailed information on observation space, refer to App. A.2.

2.4 Action Space

2https://docs.gtk.org/atspi2/

5

https://docs.gtk.org/atspi2/

Table 2: Some examples of the mouse and keyboard ac-
tions A in OSWORLD. See App. A.3 for the complete
list.

Function Description

moveTo(x, y) Moves the mouse to the specified coordinates.
click(x, y) Clicks at the specified coordinates.
write(‘text’) Types the specified text at the current cursor location.
press(‘enter’) Presses the Enter key.
hotkey(‘ctrl’, ‘c’) Performs the Ctrl+C hotkey combination (copy).
scroll(200) Scrolls up by 200 units.
scroll(-200) Scrolls down by 200 units.
dragTo(x, y) Drags the mouse to the specified coordinates.
keyDown(‘shift’) Holds down the Shift key.
keyUp(‘shift’) Releases the Shift key.
WAIT Agent decides it should wait.
FAIL Agent decides the task is infeasible.
DONE Agent decides the task is finished.

Action space A in OSWORLD encom-
passes all mouse and keyboard actions,
including movement, clicks (left-key,
right-key, multiple clicks), dragging,
keystrokes, hotkeys, and others, covering
all human-computer action space. Some
action examples are shown in Tab. 2 and
the complete action list can be found
in Appendix A.3. We use the widely
used mouse and keyboard control library
pyautogui3 for our action space. This
library leverages the high-level program-
ming language Python to replicate and
replay various human inputs into com-
puters through code, allowing us to con-
struct a universal and complete representation of actions. The agent must generate syntax-correct
pyautogui Python code to predict valid actions. Basic actions, such as press and moveTo, can be
integrated within program structures, such as for-loops, significantly improving the expressiveness
of an action. Timing is also crucial, as highlighted in previous studies on mobile devices [50], as
well as the ability to determine whether a task is infeasible or completed. Therefore, we add three
special actions named WAIT, FAIL, and DONE to enhance the aforementioned action spaces. Previous
efforts towards creating domain-specific agents, such as MiniWoB++ [44, 30], CC-Net [18], and
WebArena [66, 22], have defined action spaces that include clicks and typing, as well as some actions
specially designed for web browsing. However, they do not model all possible actions on a computer,
leading to limitations when attempting actions like right-clicking and clicking with the ctrl key held
to select items. This imposes an upper bound on agent learning capabilities.

3 OSWORLD Benchmark
We introduce the OSWORLD benchmark, which encompasses 369 real computing tasks defined
and executed on Ubuntu. Additionally, we provide a set of 43 tasks for Windows built on the
OSWORLD environment. 4 The environment preparation, annotation process, data statistics, and
human performance are described in this section.

3.1 Operating System and Software Environments

OSWORLD supports real operating systems, including Windows, macOS, and Ubuntu, for the
development of automated computer agents. For development purposes, we offer an extensive set
of examples on Ubuntu and its open-source applications, leveraging their open-source nature and
more accessible APIs for task setting and evaluation. We also provide annotated testing examples
for Windows, focusing on applications with similar functionalities. For the first time, our real
OS environments enable us to define all kinds of computer tasks, including those that involve
interacting with multiple applications (e.g., Chrome and file manager) and interfaces (GUIs and
CLIs). Considering availability, the strength of the user community, and diversity, we mainly focus
on eight representative applications as well as the basic ones system provide: Chrome for web
browsing, VLC for media playback, Thunderbird for email management, VS Code as a coding IDE,
and LibreOffice (Calc, Writer, and Impress) for handling spreadsheets, documents, and presentations
respectively, GIMP for image editing, and other basic OS apps like terminal, file manager, image
viewer, and PDF viewer. Each example drawn from these applications separate or in combination
showcases distinct operational logic and necessitates skills including commonsense knowledge,
high-resolution perception, mastery of software shortcuts, and the precise controlling of mouse and
keyboard movements. For more details, check App. B.1 and B.2.

3.2 Tasks
We create a benchmark suite of 369 real-world computer tasks on Ubuntu environment collected
from authors and diverse sources such as forums, tutorials, guidelines, etc., to show the capability

3https://pyautogui.readthedocs.io/en/latest/
4Due to copyright issues, these Windows tasks require further activation by the user.

6

https://pyautogui.readthedocs.io/en/latest/

for open-ended task creation within OSWORLD. Each example is carefully annotated with a natural
language instruction, a setup configuration with corresponding files and setup actions for initialization
of initial states upon our provided VM image, and a manually crafted evaluation script to check if
the task is successfully executed. We also adapt 43 tasks from the Ubuntu set for analytic usage
on Windows. Overall, it takes 9 computer science students (all student authors) over 3 months,
consuming approximately 1800 man-hours (650 hours on single-app tasks, 750 hours on workflow
tasks and 400 hours for double-checking).

Task instructions and scenarios To draw the most diverse and close-to-reality usage cases, we ex-
plore several types of resources, including official guidelines & tutorials, video pieces giving tips and
tutorials on the Internet (e.g., TikTok and YouTube), how-to websites (e.g., WikiHow), Q&A forums
(e.g., Reddit, Quora, Superuser, & StackOverflow), formal video courses (e.g., Coursera and Udemy),
and publicly-available personal blogs & guidelines. The detailed resources used in our benchmark are
listed in App. B.3. The examples are selected by judging their popularity, helpfulness, and diversity,
revealed by the views and votes. Meanwhile, we notice that it is challenging to find enough examples
on the internet for tasks that involve the collaboration of multiple software applications. Therefore, the
authors conducted extensive brainstorming, combining some existing examples or drawing inspiration
from daily-life scenarios, to compile the tasks. The instructions and task-related files are then crafted
from these real-world guidelines and questions by the authors. After the selection, each example
will be cross-checked by the other two authors on the feasibility, ambiguity, and alignment with the
source. We not only collect tasks that can be finished, but also collect the infeasible ones that are
inherently impossible to be completed due to deprecated features or hallucinated features raised by
real users, which results in 30 infeasible examples in our benchmark. Additionally, to demonstrate
the unification ability of OSWORLD environment for the creation of open-ended computer tasks, we
also integrate 84 examples from other benchmarks focusing on single-application or domain-specific
environments such as NL2Bash [29], Mind2Web [9], SheetCopilot [25], PPTC [14], and GAIA [36].
Refer to App. B.4 for more details and B.8 for sampled examples for the showcase. A total of about
400 man-hours were spent to collect these examples.

Initial state setup configs To construct the initial state, we prepare the files required for the task
and set up the initial state. For the files, we try to obtain them from the sources of the tasks we found,
or, in cases where the files are not publicly available, we recreate them as realistically as possible
based on scenarios. For the initial state setup, we also developed some functions based on the APIs
of software and OS to control the opening and resizing of software windows and reimplement some
functions that are difficult to achieve with APIs using pyautogui. For different tasks, we write configs
to set the files and initial steps in the virtual machine and verify them in the environment. For example,
the setup stage (highlighted in red color, keyed as “config”) in Figure 2 involves downloading files
into the virtual machine to prepare a close-to-reality initial environment, and then opening the file of
interest with the corresponding application. The setup steps for each example take about 1 man-hours
to construct.

Execution-based evaluation For each task, we select the appropriate getter functions, evaluator
function, and parameters to compose the configuration file. The getter function is used to extract
key components (e.g., the modified file, the text contents displayed in a window element) from the
final state of the environment, and the evaluator function assesses success based on the extracted key
components. If a function does not exist, we will construct it and add it to the function library of the
environment. After completing each evaluation, the annotator conducts initial tests with self-designed
test cases. Then, in the human evaluation and experiment running phases, each example is further
scrutinized and iterated upon by different individuals three times from the perspective of alignment
with the instruction and correctness under different solutions. As a result, we implement nearly
sample-specific executable evaluation scripts, resulting in a total of 134 unique evaluation functions
for assessing functional correctness—significantly more than the previous benchmarks. The average
time spent on developing the evaluation for an example and its examination amounts to approximately
2 man-hours from graduate students.

Quality control Once annotation is finished, each example is attempted by two authors who did
not participate in annotating that specific example, acting as agents to complete the task. This process
evaluates the current example’s quality and provides feedback to the annotators (such as unclear
instructions or inability to complete the task, crashes in corner cases, serious instances of false

7

positives and negatives, etc.), and involves joint revisions and supplements. During experiments for
human performance and baselines, we further fixed examples found to have issues, dedicating over
400 man-hours for four rounds of checks. Further investment of time and a more red teaming could
further reduce false positives and negatives, which we will leave to future work.

3.3 Data Statistics

Table 3: Key statistics in OSWORLD.
The “Supp. tasks” refers to the Windows-
based tasks, that could only be used after
activation due to copyright restrictions.

Statistic Number

Total tasks (Ubuntu) 369 (100%)
- Multi-App Workflow 101 (27.4%)
- Single-App 268 (72.6%)
- Integrated 84 (22.8%)
- Infeasible 30 (8.1%)
Supp. tasks (Windows) 43

Initial States 302
Eval. Scripts 134

Files 2.2%
Settings 2.4%Terminal 1.9%

Visualization 1.9%
Proc

es
sin

g 7
.0%

Ta
b.

 fo
rm

at
tin

g
3.

8%

Sl
id

e
se

tti
ng

s
4.

1%

Slide editing 8.7%

Doc. settings 1.6%

Doc. editing 4.6%Image ops 7.0%

Configuration 3.8%

Code assist 2.4%

File ops 8.1%

Mult
im

ed
ia

4.6
%

D
at

a
an

al
ys

is
 8

.9
% M

isc. 5.7%

Settings 5.7%
Info query 4.1%

Shopping 2.7%

Account ops 1.6%

Email ops 2.4%

Video control 4.6%

OS 6.5%

31.7%

13.3%

Workflow

27.4%

Daily

21.1%

Office

Professional

Figure 3: Distribution of task instructions in OS-
WORLD based on the app domains and operation
types to showcase the content intuitively.

Statistics To facilitate the analysis and comprehension of the agent’s capabilities, we cluster the
examples into the software categories. Specifically, these categories include OS, Office (LibreOffice
Calc, Impress, Writer), Daily (Chrome, VLC Player, Thunderbird), Professional (VS Code and
GIMP), and Workflow (tasks involving multiple apps). The main statistics of OSWORLD are
presented in Tab. 3 and Fig. 3, showcasing the outline and a broad spectrum of tasks. Specifically,
OSWORLD contains a total of 369 tasks (and an additional 43 tasks on Windows for analysis), with
the majority (268 tasks or 72.6%) aiming at single application functionalities and a remarkable section
of workflow-related tasks (101 tasks or 27.4%). The dataset’s diversity is further affirmed by the
inclusion of tasks considered infeasible, totaling 30 tasks or 8.1% of the dataset. Additionally, a total
of 84 tasks (22.8%) are integrated from related datasets, highlighting the dataset’s applicability in
universal modeling. Remarkably, the dataset incorporates 302 distinct initial states and 134 different
evaluation scripts, underscoring the comprehensive approach towards evaluating the tasks’ complexity
and requirements. More statistic details are available in App. B.4.

Comparison with existing benchmarks OSWORLD is compared with a number of existing
benchmarks in Table 4. OSWORLD take utilizes raw mouse and keyboard actions that is universal to
the computer environment, rather than focusing on specific computer applications (e.g., a browser [66,
9]), with multimodal observation including screenshot (Multimodal Support column). This universal
action space enables the constructed agents to handle general tasks in the digital world. Our executable
environment allows agents to freely explore during both the learning and evaluation phases, rather
than providing only static demonstrations to evaluate an agent’s prediction of the next step (Executable
Env. column). Moreover, it does not solely focus on interactions within a single app but also considers
interactions across multiple apps and the overall task (Cross-App column). Unlike many evaluations
that offer the same evaluation script or a few scripts for a certain type of task, the OSWORLD
benchmark provides example-wise, execution-based evaluation for tasks. Specifically, the total of 134
unique execution-based evaluation functions in our benchmark is significantly more than previous
work, demonstrating the complexity, diversity, and evaluation challenges of tasks in our benchmark
(# Exec.-based Eval. Func. column). It also allow us to freely choose open-ended tasks and scale
to new environments, rather than struggling in crafting new ones. Constructing intermediate initial
states as task setup increases realism and poses challenges to the agents’ exploration capabilities
(Intermediate Init. State column).

3.4 Human Performance

8

Table 4: Comparison of different environments for benchmarking digital agents. The columns
indicate: the number of task instances and templates (if applicable) where the task instantiated from
templates through configurations (# Instances (# Templates)), whether they provide a controllable
executable environment (Control. Exec. Env.), the ease of adding new tasks involving arbitrary
applications in open domains (Environment Scalability), support for multimodal agent evaluation
(Multimodal Support), support for and inclusion of cross-app tasks (Cross-App), capability to start
tasks from an intermediate initial state (Intermediate Init. State), and the number of execution-based
evaluation functions (# Exec.-based Eval. Func.).

Instances
(# Templates)

Control.
Exec. Env.?

Environment
Scalability?

Multimodal
Support?

Cross-
App?

Intermediate
Init. State?

Exec.-based
Eval. Func.

GAIA [36] 466 ✗ - ✗ ✗ ✗ 0
MIND2WEB [9] 2350 ✗ - ✓ ✗ ✓ 0
WEBLINX [33] 2337 ✗ - ✓ ✗ ✓ 0
PIXELHELP [27] 187 ✗ - ✓ ✗ ✗ 0
METAGUI [47] 1125 ✗ - ✓ ✗ ✗ 0
AITW [40] 30k ✗ - ✓ ✗ ✓ 0
OMNIACT [21] 9802 ✗ - ✓ ✗ ✓ 0

AGENTBENCH [32] 1091 Multi-isolated ✗ ✗ ✗ ✗ 7
INTERCODE [57] 1350 (3) Code ✗ ✗ ✗ ✗ 3
MINIWOB++ [30] 125 Web ✗ ✓ ✗ ✗ 125
WEBSHOP [58] 12k (1) Web ✗ ✓ ✗ ✗ 1
WEBARENA [66] 812 (241) Web ✗ ✓ ✗ ✗ 5
VWEBARENA [22] 910 (314) Web ✗ ✓ ✗ ✗ 6
WORKARENA [10] 23k (29) Web ✗ ✓ ✗ ✓ 7
WIKIHOW [61] 150 (16) Mobile ✗ ✓ ✗ ✗ 16
ASSISTGUI [13] 100 ✗ ✗ ✓ ✗ ✓ 2

OSWORLD 369 Computer ✓ ✓ ✓ ✓ 134

0

100

200

300

400

500

600

700

800

900

Hu
m

an
 O

pe
ra

tio
n

Ti
m

e
(s

)

Ours median: 111.94s
WebArena median: 35.38s

WebArena Ours
30

40

50

60

70

80

90

Ac
cu

ra
cy

 (%
)

Figure 4: Human operation time and accuracy on
OSWORLD and WebArena.

We conduct human evaluations on each example
in our dataset, with annotators being computer
science major college students who possess ba-
sic software usage skills but have not been ex-
posed to the samples or software before. We
recorded the time required to complete each ex-
ample and whether their completion of the ex-
ample was correct. For comparison, we also
sampled 100 examples from WebArena [66] un-
der the same evaluation setup.

As illustrated, tasks from our dataset generally
required more time to complete, with a median
completion time of 111.94 seconds (compared
to 35.38 seconds in WebArena), and a significant
number of examples distributed at 900 seconds
or even more. In terms of accuracy, the human
performance on our tasks was approximately 72.36%, significantly lower than the 88% observed
on the pure web task dataset. These findings highlight the complexity and challenge of tasks in our
dataset, which demand more time and effort. The lower accuracy rate further indicates that our tasks
require a higher level of understanding and proficiency, underscoring the need for advanced models
and techniques to tackle them effectively.

4 Benchmarking LLM and VLM Agent Baselines
In this section, we present the implementation details and experimental settings for several state-of-
the-art LLM and VLM agent baselines on OSWORLD benchmark, as well as their performance.

4.1 LLM and VLM Agent Baselines

We adopt state-of-the-art LLM and VLM from open-source representatives such as Mixtral [19],
CogAgent [17] and Llama-3 [35], and closed-source ones from GPT, Gemini, Claude and Qwen
families on OSWORLD, to serve as the foundation of agent. We also explore methods such as the
Set-of-Marks aided approach [56, 11], which has been demonstrated to improve spatial capabilities for
visual reasoning. Our prior experiments following VisualWebArena [22] adopt few-shot prompting,

9

Table 5: Success rates of baseline LLM and VLM agents on OSWORLD, grouped by task categories:
OS, Office (LibreOffice Calc, Impress, Writer), Daily (Chrome, VLC Player, Thunderbird), Profes-
sional (VS Code and GIMP) and Workflow (tasks involving multiple apps), for gaining insights from
interfaces and operation logic. See App. C.1 and C.5 for more details.

Inputs Model Success Rate (↑)
OS Office Daily Profess. Workflow Overall

A11y tree Mixtral-8x7B 12.50% 1.01% 4.79% 6.12% 0.09% 2.98%
Llama-3-70B 4.17% 1.87% 2.71% 0.00% 0.93% 1.61%

GPT-3.5 4.17% 4.43% 2.71% 0.00% 1.62% 2.69%
GPT-4 20.83% 3.58% 25.64% 26.53% 2.97% 12.24%

Gemini-Pro 4.17% 1.71% 3.99% 4.08% 0.63% 2.37%
Gemini-Pro-1.5 12.50% 2.56% 7.83% 4.08% 3.60% 4.81%

Qwen-Max 29.17% 3.58% 8.36% 10.20% 2.61% 6.87%
GPT-4o 20.83% 6.99% 16.81% 16.33% 7.56% 11.36%

Screenshot CogAgent 4.17% 0.85% 2.71% 0.00% 0.00% 1.11%
GPT-4V 12.50% 1.86% 7.58% 4.08% 6.04% 5.26%

Gemini-ProV 8.33% 3.58% 6.55% 16.33% 2.08% 5.80%
Gemini-Pro-1.5 12.50% 6.99% 2.71% 6.12% 3.60% 5.40%
Claude-3-Opus 4.17% 1.87% 2.71% 2.04% 2.61% 2.42%

GPT-4o 8.33% 3.58% 6.07% 4.08% 5.58% 5.03%

Screenshot CogAgent 4.17% 0.85% 2.71% 0.62% 0.09% 1.32%
+ A11y tree GPT-4V 16.66% 6.99% 24.50% 18.37% 4.64% 12.17%

Gemini-ProV 4.17% 4.43% 6.55% 0.00% 1.52% 3.48%
Gemini-Pro-1.5 12.50% 3.58% 7.83% 8.16% 1.52% 5.10%
Claude-3-Opus 12.50% 3.57% 5.27% 8.16% 1.00% 4.41%

GPT-4o 41.67% 6.16% 12.33% 14.29% 7.46% 11.21%

Set-of-Mark CogAgent 4.17% 0.00% 2.71% 0.00% 0.53% 0.99%
GPT-4V 8.33% 8.55% 22.84% 14.28% 6.57% 11.77%

Gemini-ProV 4.17% 1.01% 1.42% 0.00% 0.63% 1.06%
Gemini-Pro-1.5 16.67% 5.13% 12.96% 10.20% 3.60% 7.79%
Claude-3-Opus 12.50% 2.72% 14.24% 6.12% 4.49% 6.72%

GPT-4o 20.83% 3.58% 3.99% 2.04% 3.60% 4.59%

Human Performance 75.00% 71.79% 70.51% 73.47% 73.27% 72.36%

which involves using (observation, action) pairs as few-shot examples and inputting the current
observation to generate the action, but this resulted in poor performance (success rate of 2.79% under
pure-screenshot setting). We attribute the result to a lack of history encoding and change in the
prompting scheme. Therefore, in the experiments, we opt to utilize the context window by providing
the most recent 3 observations and actions in chat mode, i.e., alternating between “user” prompts and
“assistant” prompts, instead of the (observation, action) pairs. We use a temperature of 1.0 and top-p
of 0.9 and truncate from the beginning of the input if still exceeding the max tokens limit required by
the models. The prompts used in the experiments are provided in App.C.1. We heuristically request
the agents to complete the tasks within a max step limit of 15, which is enough for most tasks. We
present a summary of the results in Tab. 5 and analysis in Sec. 4.2. We implement the following four
types of input settings on LLM and VLM.

Accessibility tree We aim to evaluate whether the current advanced text-based language models can
reason and ground themselves in the context to generate the correct action. Since the original XML
format of accessibility tree contains millions of tokens, caused by countless elements, redundant
attributes, and a mass of markups, we opt to filter out non-essential elements and attributes, and
represent the elements in a more compact tab-separated table format. To be specific, we filter the
elements by their tag, visibility, availability, existence of text or image contents, etc. The detailed
filtering method is elaborated on in App. C.3. Only the tag, name, text, position, and size of the
remaining elements are kept and concatenated by tab character in the input. As the raw coordinates
are provided within the accessibility tree, the LLM is required to ground its action predictions to
accurate coordinates.

Screenshot This is the input format that is closest to what humans perceive. Without special
processing, the raw screenshot of the virtual machine is directly sent to the VLM. The VLM is to
understand the screenshot and predict correct actions with precise coordinates. The raw resolution

10

of the screen is set to 1920× 1080. In order to investigate the impact of input resolution, ablation
studies are also conducted with different resolutions by manually downsampling the screenshot.

Screenshot + accessibility tree To check if a combination with the accessibility tree can improve
the capacity of VLM for spatial grounding, we take this setting by inputting both raw screenshots and
a simplified accessibility tree.

Set-of-Marks Set-of-Marks (SoM) [56] is an effective method for enhancing the grounding capa-
bilities of VLMs such as GPT-4V, by segmenting the input image into different sections and marking
them with annotations like alphanumerics, masks, or boxes. We leverage the information from the
filtered accessibility tree and mark the elements on the screenshot with a numbered bounding box.
Following VisualWebArena [22] and UFO [59], we further combine the annotated screenshot with
the text metadata from accessibility tree, including the index, tag, name, and text of the elements5.
Instead of predicting precise coordinates, the VLM is supposed to specify the action object by its
number index, which will be mapped into our action space by post-processing. Ablation studies are
also conducted with different resolutions for SoM setting.

4.2 Results
LLMs and VLMs are still far from being digital agents on real computers. The results from
Table 5 show that when only using screenshots as input and adopting pyautogui as the code space,
the success rate of the model is only 5.26% to 5.80% even with the strongest VLMs GPT-4V and
Gemini-Pro-vision. Meanwhile, the most advanced batch of language models, when using the a11y
tree as input, has a success rate ranging from 2.37% to 12.24%. Overall, these figures of performance
are significantly lower than the human-level performance which is 72.36% overall for individuals
not familiar with the software. These gaps indicate that current LLMs and VLMs may still have a
significant gap from humans in performance, necessitating further research in this area. Another
surprising finding is that although Claude-3 Opus is reported to be competitive with GPT-4V on
common benchmarks [2], it falls far behind when used as a digital agent in OSWORLD. We will
present a qualitative analysis and infer reasons in Sec. 5.4.

Agent performance has much higher variance than human across different types of computer
tasks. OSWORLD is capable of simulating and evaluating the various software types and combina-
tion scenarios involved in people’s daily lives in an open-ended manner. We observe performance
based on software type grouping and find that agents based on LLMs show significant differences
across different subsets. As shown in Table 5, performance tends to be better in tasks oriented
towards CLI interfaces (such as OS-type tasks) compared to those based on GUI (such as Office
tasks involving clicks on spreadsheet interfaces and document processing). Moreover, the biases
between different models and settings are inconsistent, with gaps even exceeding 20%; another point
is that performance on workflow-type tasks involving multiple software is far below the figures on a
single software, generally below 5%. However, human performance is consistent across these tasks,
fluctuating around 70% without exceeding a 5% variance, forming a significant contrast with the
models. This suggests that the way humans understand and complete tasks may differ significantly
from the current logic and methods based on LLMs and VLMs.

A11y tree and SoM’s effectiveness varies by models. The a11y tree contains some attribute
information of visible elements, including window position and size, as well as some semantic
labels of the window. The performance gap illustrated in Table 5 between GPT-4V and Claude-3
with additional a11y tree information and under a pure screenshot setup suggests that it still has
significant room for improvement in accurately perceiving and reasoning GUI elements. Conclusions
are reversed for Gemini-Pro.

While applying SoM setting, there is a decline for GPT-4V in performance compared to directly
providing the model with screenshots and a11y tree inputs, which contradicts the widely shown
effectiveness of SoM in classic image understanding tasks [56], as well as in application areas like
web agents [65, 16]. We speculate that this is due to the tasks performed within operating systems
having higher resolution and much more elements, (e.g., the cells in a spread table), leading to a

5This metadata is similar to but kind of different from that provided in the single a11y tree setting. To be
specific, the coordinates and size are replaced with element index.

11

significant amount of noise that counteracts the auxiliary role of bounding boxes. Some tasks also
require detailed operation on coordinate-level, which cannot be modeled by the bounding box that
SoM marks.

VLM agents with screenshot-only setting show lower performance, but it should be the ultimate
configuration in the long run. The setting that relies solely on screenshots exhibits the lowest
performance, at only 5.26%, among all. Surprisingly, it still achieves a decent outcome when
managing workflow tasks (involving multiple applications) that involve multiple applications. Despite
the performance, it is worth mentioning that this is the only configuration that does not require
additional information, such as an accessibility (a11y) tree, making it concise and in alignment with
intuitive human perception since the a11y tree may not be well-supported across all software or
cannot be obtained under noisy conditions (e.g., when the agent is restricted to viewing the computer
through peripheral screens), and the massive amount of tokens contained in the a11y tree (even
just the leaf nodes can have tens of thousands of tokens) can also impose an additional inference
burden on the model. Future work on purely vision-based agents could lead to stronger generalization
capabilities and, ultimately, the potential for integration with the physical world on a larger scale.

5 Analysis
In this section, we aim to delve into the factors influencing the performance of VLMs in digital
agent tasks and their underlying behavioral logic. We will investigate the impact of task attributes
(such as difficulty, feasibility, visual requirement, and GUI complexity), input measurements (such
as screenshot resolution, the influence of trajectory history, and the effect of UI layout), explore
whether there are patterns in the agent’s performance across different operating systems, and make a
qualitative analysis in the aspect of models, methods, and humans. All experiments, unless specifically
mentioned otherwise, are conducted using GPT-4V under the Set-of-Mark setting. Some takeaways
from the analysis are: 1) higher screenshot resolution typically leads to improved performance; 2)
encoding more a11y (text) trajectory history can boost performance, while not working for screenshots
(image); 3) current VLMs are not adept at image-based trajectory history context; 4) current VLM
agents are not robust to UI layout and noise; 5) the performance of VLM agents across OS is in
strong correlation; 6) VLM agents have common error types like mouse-clicking inaccuracies, limited
domain knowledge, and more types discussed in Sec. 5.4.

5.1 Performance by Task Difficulty, Feasibility and App Involved

We analyze the success rate across several additional subsets of tasks, as summarized in Tab. 6 and
will be discussed in the following sections.

Table 6: Success rate (SR) of GPT-4V
(SoM) across different types of tasks.

Task Subset % of Total SR (↑)

Easy 28.72% 16.78%
Medium 40.11% 13.12%
Hard 30.17% 4.59%

Infeasible 8.13% 16.67%
Feasible 91.87% 13.34%

Single-App 72.63% 13.74%
Multi-App Workflow 27.37% 6.57%

Task difficulty We categorize the tasks based on the
time required for human completion into three groups:
0∼60s (Easy), 60s∼180s (Medium), and greater than
180 seconds (Hard), as an indicator of difficulty. Across
these groups, the model’s success rate drops as the
required time increases, with tasks taking longer than
180 seconds becoming almost impossible to complete
(considering we have infeasible examples for agent’s
luckiness), whereas human performance across these
three groups is 84.91%, 81.08% and 49.57%, showing
a slight decline of the same trend but not to the extent
of being unachievable.

Feasibility We also divide tasks into groups of tasks infeasible (e.g., deprecated features or hallu-
cinated features) and tasks feasible, which requires the agents to have the ability to judge based on
their own knowledge and exploration results. As shown in Tab. 6, we observe that agents currently
perform slightly better in terms of infeasibility (16.67% to 13.34%), but overall, they are at a relatively
low level. It is noteworthy that we also observe in some methods and settings (such as under the
pure screenshot setting with the Gemini-Pro model), agents tend to easily output FAIL and refuse to
continue trying. This situation leads to some false positives in infeasible tasks. The focus needs to be
on improving overall performance.

12

Number of apps involved We also examined the performance based on whether the task involved
apps software or within a single app. As shown in Tab. 6, the average performance for tasks involving
a single app is low, at 13.74%, but still more than double the 6.57% observed for subsets of tasks
involving workflows across multiple apps. Within single-app scenarios, tasks involving GUI-intensive
Office apps generally performed the worst, with subsets such as LibreOffice Calc often scoring
zero (we show more detailed results in App. C.5). These findings highlight the need for improved
collaboration capabilities between software and enhanced proficiency in specific scenarios.

5.2 Performance by Multimodal Observation Variances

0.2 0.4 0.6 0.8 1.0

10

20

Ratio

Su
cc

es
s

R
at

e
(%

)

GPT-4V SoM
GPT-4V Screenshot

Figure 5: The effect of downsampling on the
screenshot on performance with down-sampling
ratios of 0.2, 0.4, 0.6 and 0.8 and run on a subset
(10%) of examples.

Higher screenshot resolution typically leads
to improved performance Despite the sig-
nificant progress in display technology (1080P,
2K, and 4K), most VLMs are still trained on
data far below these resolutions. We select the
screenshot-only input and SoM setting to test the
method’s performance under different screen in-
put down-sampling ratios (i.e., 0.2, 0.4, 0.6 and
0.8 of the original resolution), to evaluate the im-
pact of resolution changes on model recognition
ability and accuracy. The output coordinates of
the model for the screenshot setting are still ex-
pected to align with the original resolution (i.e.,
1080P). The effects of varying input resolutions
on performance are shown in Figure 5. For in-
puts based on pure screenshots, it is observed
that an increase in resolution directly correlates

with enhanced performance. This issue may arise from the discrepancy between the resolution of the
screenshot and the coordinates of the output. However, the scenario slightly differs on SoM. Interest-
ingly, a reduction in resolution to 768×432 (down-sampling ratio of 0.4) leads to an improvement in
the agent’s performance and further diminishing the resolution even more to a down-sampling ratio
of 0.2 results in a noticeable decline in performance.

0 2000 4000 6000 8000 10000 12000
Tokens

0.00

0.02

0.04

0.06

Fr
eq

ue
nc

y
De

ns
ity

 (%
)

90th Percentile: 6343.60

Figure 6: The length distribution of a11y tree as
observation from sampled trajectories.

1 2 3 >3

5

10

15

History Trajectory Length

Su
cc

es
s

R
at

e
(%

)

GPT-4V SoM
GPT-4V Screenshot

Figure 7: The effect of length of history on perfor-
mance with the history encoding length of 1, 2, 3,
and > 3 and run on a subset (10%) of examples.

Longer text-based trajectory history context
improves performance, unlike screenshot-
only history, but poses efficiency challenges
The main experiment revealed the decisive role
of the a11y tree in performance within the cur-
rent technological context. Even when we retain
key attribute elements based on heuristic rules
(keep nodes with tags of the document, item,
button, heading, label, etc.), LLMs still require
a sufficiently large context to process this infor-
mation effectively. To further understand this,
we sample some a11y tree observations from
OSWORLD and conducted the statistical anal-
ysis, as shown in Figure 6. The analysis indi-
cates that a context length of 6000 is needed to
accommodate about 90% of cases for a single
observation. However, relying solely on current
observations inherently leads to agents making
repeated errors. Therefore, we include current
observations as well as past N rounds of obser-
vations and actions in the constructed prompts
(see appendix for more details), to explore the
impact on agent performance when N is set to 1,
2, 3, and all where we put as much context as
we can. The experimental results (as shown in
Figure 7) show the performance increase with

13

more history context for SoM. Future work on constructing models with enhanced capabilities for
longer context support and understanding reasoning, improving model efficiency, and designing new
agent architectures for efficient memory storage will have a significant impact on digital agents.

However, we also note that the inclusion of additional trajectory history does not enhance performance
under the pure screenshot setting. This suggests that contemporary advanced VLMs might not be
as adept at extracting robust contextual information from images as they are from textual data.
Strengthening this capability to harness information from images constitutes an important avenue for
future enhancements.

Position Size ClutterOriginal

20

40 36.5

15.04

25.39

50.79

Su
cc

es
s

R
at

e
(%

)

Figure 8: Decline in performance due to
window perturbations.

VLM agents struggle with perturbation of position and
size of application windows and irrelevant information
We continue to adopt the SoM setting and sample a subset
of 28 tasks that agents relatively well perform (with a
success rate of 50.79%) in OSWORLD. At the beginning
of each task, we introduce disturbances to the windows
by 1) changing the position of the window; 2) changing
the size of the window to the minimal; 3) opening some
irrelevant software and maximizing them to clutter the
screen. This process generates several times more samples
from the subset of tasks to observe their performance. We
find current agents are not robust in handling all these
changes, which leads to a performance drop to over 60%
to even 80%. Surprisingly, we find agents can switch
the window to a certain degree but fail to maximize the

window as an intermediate step and are stuck on other things. This suggests that while agents possess
some capability to navigate between windows, they lack a comprehensive strategy for managing
window states effectively.

5.3 Performance across Different Operating Systems

Another key challenge in building universal digital agents is ensuring that these agents can maintain
efficient and consistent performance across different operating system environments. The differences
between OS and their software ecosystems can significantly impact an agent’s observation and action
spaces, leading to performance uncertainties. Here, we explore and analyze the correlation between
the success of agents in completing tasks on Windows after migrating from Ubuntu using examples
from OSWORLD.

Table 7: Comparison of model performance
and correlation across operating systems.

OS SR (%) Correlation Coefficient

Ubuntu 4.88 0.7Windows 2.55

We enhance the functionality of the OSWORLD envi-
ronment to support setting up initial experiment states,
final evaluations, and obtaining observations such as the
a11y tree and screenshots in Windows OS. Additionally,
we have made example-wise fine-tuning modifications
to the existing subset in OSWORLD for migration to
Windows. We conduct evaluations using the GPT-4V
screenshot-only method and present the correlation of
performance across the two operating systems. As shown in Tab. 7, the model’s performance on
Ubuntu and Windows is 4.88% and 2.55%, respectively, with a correlation coefficient of 0.7, despite
the differences in their observation spaces. This implies that insights and methodologies developed
within the OSWORLD framework can be effectively transferred to Windows environments with a
high degree of reliability.

5.4 Qualitative Analysis

In this section we highlight representative examples of success, failure, and surprising outcomes,
alongside a comparative study between GPT-4V and Claude-3 agents, to elucidate the unique
challenges and insights our environment introduces. See App. D for more details.

Success and failure cases We find agents, particularly based on GPT-4V, can successfully solve
tasks that involve complex problem-solving or creative thinking, showcasing the advanced under-

14

standing and processing capabilities of the model already. One successful task is shown in the first
row of Figure 9. The agent is requested to extract subtitle files from the video stream and save them
locally. The agent first divides the screen into two parts, with the VLC application window on the
left and the terminal window open on the right, and uses the ffmpeg command twice. The first use
removes the subtitles embedded in the original video, and the second use saves the extracted subtitles
locally.

Task Instruction: I downloaded an episode of Friends to practice listening, but I don't know how to remove the subtitles. Please
help me remove the subtitles from the video and export it as "subtitles.srt" and store it in the same directory as the video.

Step1: pyautogui.click(activities_x, activities_y) Step 3: pyautogui.click(focus_x, focus_y)

Step 4: pyautogui.typewrite('ffmpeg -i video.mp4 -map
0:s:0 subtitles.srt', interval=0.5)

Step 5: pyautogui.typewrite('ffmpeg -i video.mp4 -c copy
-sn no_subtitles_video.mp4', interval=0.5) Step 6: Done

Step 2: pyautogui.typewrite('terminal', interval=0.5)

Figure 9: The agent successfully understood the complex task instructions, extracted the subtitle file
from the video, and generated a pure video without embedded subtitles.

Despite the successes, there are notable failures that highlight the limitations of current models. In
the task of “center-aligning the title of the document” (Fig. 10 line 1), the agent fails to ground the
relatively simple requirement of “center alignment of texts”, performing many useless actions such
as selecting irrelevant words, opening irrelevant menus, etc.

Moreover, we find that the agent lacks prior knowledge in using software, performing poorly in many
specialized tasks (as shown in Fig. 16, with GIMP, LibreOffice Calc, and Chrome selected). Taking
GIMP as an example, for the instruction “reduce brightness” the agent does not know which menu in
the toolbar is for brightness adjustment and instead randomly tries until exhausting the maximum
number of steps.

Common errors by GPT-4V agents Among the 550 failed examples from different settings in
our sample, more than 75% exist mouse click inaccuracies, which is the most common error. The
agent fails to click the correct coordinates despite planning detailed and accurate steps in their code
comments, indicating strong planning but weak execution capabilities. Mouse click inaccuracies
lead to two other frequent errors: repetitive clicks and environmental noise dilemma. Repetitive
clicks occur when the agent repeatedly misclicks, adjusts, and fails, consuming too many steps.
Environmental noise arises from clicking unintended objects, causing pop-ups, or opening unrelated
applications. Due to a lack of prior knowledge about most professional software, it falls into a
mismatch dilemma between the actions taken and the current state, and don’t know how to get
back to normal. Moreover, the agent lacks basic human-like cognition of web pages, such as not
closing pop-ups in real-world web pages or being attracted by advertisement content, which affects
its original correct judgment. Failures also arise from misinterpretation of instructions and visual
oversight, highlighting the need for improvement in language and visual processing. See App. D.2
for the specific execution process.

Discrepancies in task difficulty between agent and human We identify notable disparities in
the perceived difficulty of tasks between humans and AI agents. Tasks that are intuitively simple
for humans often present substantial challenges to agents, and conversely, tasks that humans find
demanding can be more straightforward for agents to execute. You can find more details in Fig. 19
and App. D.3.

15

Task Instruction: help me center align the heading in LibreOffice.

Task Instruction: erase all the highlighted marks in this document

Task Instruction: use GIMP to cut out the 2s to 4s part of a video

Step 1: pyautogui.click(focux_x, focus_y) Step 2: pyautogui.moveto(coor_x, coor_y) Step 3: pyautogui.click(menu_x, menu_y) Step 4: Failed (Meaningless actions)

Step 2: pyautogui.mouseDown() Step 3: pyautogui.hotkey('ctrl', 'a') Step 4: Failed (Did not find the right entrance)Step 1: pyautogui.click(libreoffice_writer)

Step 2: pyautogui.click(focus_x, focus_y) Step 3: pyautogui.typewrite('ffmpeg -ss …',
interval=0.05)

Step 4: Done, but doesn't follow the
instruction

Step 1: pyautogui.hotkey('ctrl', 'atl', 't')

Figure 10: Screenshots of the three examples mentioned in the quality analysis. The first line is an
example of GPT-4V failing at a very simple task, the second line is one example where agents face
more difficulty than humans, and the third line is one example that is more difficult for humans than
for agents.

Tasks where humans outperform agents These tasks mainly involve text-based and design-
related work, such as “bold the font on this slide and add notes” or “erase all the highlighted marks
in this document” (Fig. 10 Line 2). Since the Internet lacks such fine-grained data as the software
execution process, the agent also lacks the corresponding training process, so its grounding ability is
not good enough. The lack of understanding of GUI logic also causes poor performance on operations
like selecting and scrolling.

Tasks where agents outperform humans Tasks that the agent considers simple but humans find
difficult are concentrated in “code solvability tasks”, such as “monitor the system CPU for 30s and
output the results” and “force close a process”. These tasks require little or no GUI interaction and
can be completed by executing complex codes and instructions. It’s worth noting that completing
through code sometimes mismatches with human instructions. In the task "use GIMP to cut out the
2s to 4s part of a video,(Fig. 10 Line 3)" the agent used “ffmpeg” command to complete the video
cropping, ignoring the “use GIMP” requirement in the instructions.

Surprisingly, we discovered that agents are as prone to inefficiency in mechanically repetitive tasks,
such as copying, pasting, and batch editing of Excel sheets, as humans. Humans frequently commit
careless errors during execution. The shortcomings in agents stem either from the absence of an API
or from insufficient training data related to the API, hindering their ability to efficiently process tasks
in batches. Furthermore, sluggish response times can cause tasks to either time out or surpass the
maximum allowed steps.

Comparative analysis: Claude-3 vs. GPT-4V Although Claude outperforms GPT-4 in many
benchmarks such as GSM8K, HumanEval, etc., in our main experiment, we find that Claude has
an average lower accuracy rate compared to GPT-4V by 2.84% to 7.76%. We find that Claude can
provide satisfactory high-level solutions, but its grounding ability contains hallucinations in detail.
For instance, Claude would interpret double-clicking a file as selecting it instead of opening it, treat
column B in LibreOffice Calc software as column C, and enter text in the VS Code text replacement
box without clicking on global replace. This shows that Claude can align well with human planning
in problem-solving, but lacks excellent grounding ability when it comes to execution. Details can be
seen in Fig. 20 and App. D.4.

16

6 Related Work

Benchmarks for multimodal agents Testing digital interaction agents mainly spans coding en-
vironments, web scenarios, and mobile applications. In the coding domain, several works provide
frameworks and datasets for evaluating agents across programming languages and software engineer-
ing activities [57, 20, 24, 45]. For web browsing, platforms have been developed for agents to interact
with web interfaces through keyboard and mouse actions, alongside datasets focusing on open-ended
web tasks and realistic web navigation [44, 30, 58, 9, 66, 22, 10]. Mobile device interaction research
aims at improving accessibility, with simulators for mobile UI interactions and platforms dedicated to
InfoUI tasks [27, 47, 51, 50, 40, 61, 53, 60, 52]. Further, environments connecting to real computers
and datasets for GUI grounding, albeit without interactive capability, have emerged [13, 8, 38, 21, 48].
Comprehensive task evaluation across different aspects also sees innovations [32, 36]. Differing
from previous endeavors focusing on singular environments or lacking executability, OSWORLD
integrates an interactive setup enabling agents to engage with operating systems openly, supported by
a diverse array of tasks and precise evaluation scripts within a fully controllable setting, marking it
as a competitive benchmarking realism and reliability, as well as an environment for learning and
evaluating general-purpose digital agent (See Tab. 4 for comparison).

Vision-language models for multimodal agents Many existing works on GUI interaction utilize
some form of structured data (such as HTML, accessibility trees, view hierarchies) as a grounding
source [9, 15, 27, 37, 64, 46, 62, 66]. However, source code often tends to be verbose, non-intuitive,
and filled with noise. In many cases, it is even inaccessible or unavailable for use, making multi-
modality or even vision-only perception a must. To take screenshots as input, there are already
specialized, optimized multi-modal models available that are suited for tasks on web [4, 12, 18, 23, 43]
and mobile devices [17, 63]. Additionally, general-purpose foundation models [5, 26, 31, 67] also
demonstrate significant potential for multi-modal digital agents. The development of prompt-based
methods [13, 16, 55, 65], as well as visual reasoning paradigms, have also further facilitated the
performance of digital agents in web pages, mobile apps, and desktop. To investigate how well do
current models and methods perform in digital agent tasks, our paper evaluates the results of text-only,
vision-only, and multi-modal input as well as across multiple methods, demonstrating that existing
multi-modal models are far from capable computer agents. Specifically, there is ample room for
improvement in long-horizon planning, screenshot details perception, pixel coordinate locating, and
world knowledge.

7 Conclusion and Future Work

In conclusion, the introduction of OSWORLD marks a significant step forward in the development of
autonomous digital agents, addressing critical gaps in existing interactive learning environments. By
providing a rich, realistic setting that spans multiple operating systems, interfaces, and applications,
OSWORLD not only broadens the scope of tasks digital agents can perform but also enhances their
potential for real-world application. Despite the promise shown by advancements in vision-language
models, evaluations within OSWORLD reveal notable challenges in agents’ abilities, particularly in
GUI understanding and operational knowledge, pointing to essential areas for future research and
development.

We identify several potential directions for community development and progress toward general-
purpose agents for computer operation:

Enhancing VLM capabilities for efficient and robust GUI interactions For foundation model
development, we need to boost the efficiency of our models, enabling them to process much longer
contexts and perform inference computations efficiently, akin to the robotics community [6, 7] to
better handle real-world cases. Enhancements in VLMs’ GUI grounding capabilities that is robust
to application windows changes and are also sought, focusing on the accurate understanding and
generation of precise actions aligned with given instructions. Moreover, amplifying VLMs’ ability
to comprehend context in the form of images is a pivotal goal, since it is crucial to enable history
encoding using images so that we can build memory and reflection upon that. These improvements
may require more efforts in the upstream pre-training stage, downstream fine-tuning stage, and even
in the model structure itself, as pointed out in previous work [9, 17, 33].

17

Advancing agent methodologies for exploration, memory, and reflection The next-level ap-
proach encompasses designing more effective agent architectures that augment the agents’ abilities to
explore autonomously and synthesize their findings. The agents face challenges in leveraging lengthy
raw observation and action records. It’s fascinating to explore novel methods for encoding this history,
incorporating efficient memory and reflection solutions to condense contextual information and aid
the agent in extracting key information. Additionally, integrating knowledge grounding into (V)LLM
agents through memory mechanisms is a promising avenue as well. Moreover, practice GUI assistants
also require features of personalization and customization. These features rely on techniques such
as user profiling and retaining memories from long-term user-assistant interactions. Additionally,
crafting protocols specifically for digital agents operating within GUI and CLI interfaces aims at
facilitating efficient actions is also an essential thing for the feasibility of general-purpose digital
agents in the mid-short term.

Addressing the safety challenges of agents in realistic environments The safety of agents is
a critical issue if applying a built agent in fully realistic environments, the developed universal
digital agent could potentially be used to bypass CAPTCHA systems in the future, as noted in [42].
However, due to the currently limited capabilities of agents, we have not observed any harmful
and damaging behaviors during our experiments, an automatic agent has the opportunity to damage
patent rights, abuse accounts, attempt to exploit software vulnerabilities to create viruses, or engage
in attacks. Currently, we adopt virtual machines to make it difficult for developing digital agents
to cause irreversible damage to our host machines. However, there still lacks a reliable metric to
assess the safety of an agent developed in an isolated environment. The current evaluation functions
mainly focus on the results closely regarding the task instructions, assess only the correctness of task
completion, and pay little attention to potential unnecessary damaging actions of agents. Owing to
the complexity of a complete computer environment, we didn’t work out an efficient way to detect
the latent side effects of the agent. Consequently, how to assess and control potential behaviors in
open and real environments through environmental constraints and agent training is an important
further direction of research.

Expanding and refining data and environments for agent development In terms of datasets and
environments, we can broaden the scope to cover more specialized domains, including real-sector
needs in healthcare, education, industry, transportation, and personalized requirements. Efforts can
be made to ensure our environment’s seamless deployment across various hardware and software
settings. The variance of a11y tree quality across different applications is also noticed. Although the
problem is not remarkable in the applications currently included, there is no guarantee of that the
application developers obey the a11y convention and offer clear and meaningful descriptions for GUI
elements. More intelligent approaches to filter redundant a11y tree elements and to handle latently
missing elements deserve careful investigation as well. We also highlight the necessity of a painless
data collection method, allowing for the effortless acquisition of computer operation data and its
transformation into agent capabilities.

Acknowledgements

We thank Sida Wang, Peter Shaw, Alane Suhr, Luke Zettlemoyer, Chen Henry Wu, Pengcheng Yin,
Shunyu Yao, Xing Han Lu, Siva Reddy, Ruoxi Sun, Zhiyuan Zeng, Chengyou Jia, and Lei Li for their
helpful feedback on this work.

References
[1] Adept. ACT-1: Transformer for Actions. https://www.adept.ai/act, 2022.

[2] Anthropic. Introducing the next generation of claude. https://www.anthropic.com/news/
claude-3-family, 2023. Accessed: 2024-03-26.

[3] Anthropic. The claude 3 model family: Opus, sonnet, haiku. https://www-
cdn.anthropic.com/de8ba9b01c9ab7cbabf5c33b80b7bbc618857627/Model_Card_Claude_3.pdf,
2024.

18

https://www.adept.ai/act
https://www.anthropic.com/news/claude-3-family
https://www.anthropic.com/news/claude-3-family

[4] Gilles Baechler, Srinivas Sunkara, Maria Wang, Fedir Zubach, Hassan Mansoor, Vincent Etter,
Victor Cărbune, Jason Lin, Jindong Chen, and Abhanshu Sharma. Screenai: A vision-language
model for ui and infographics understanding. arXiv preprint arXiv:2402.04615, 2024.

[5] Jinze Bai, Shuai Bai, Yunfei Chu, Zeyu Cui, Kai Dang, Xiaodong Deng, Yang Fan, Wenbin Ge,
Yu Han, Fei Huang, et al. Qwen technical report. arXiv preprint arXiv:2309.16609, 2023.

[6] Anthony Brohan, Noah Brown, Justice Carbajal, Yevgen Chebotar, Joseph Dabis, Chelsea Finn,
Keerthana Gopalakrishnan, Karol Hausman, Alex Herzog, Jasmine Hsu, et al. Rt-1: Robotics
transformer for real-world control at scale. arXiv preprint arXiv:2212.06817, 2022.

[7] Anthony Brohan, Noah Brown, Justice Carbajal, Yevgen Chebotar, Xi Chen, Krzysztof Choro-
manski, Tianli Ding, Danny Driess, Avinava Dubey, Chelsea Finn, et al. Rt-2: Vision-language-
action models transfer web knowledge to robotic control. arXiv preprint arXiv:2307.15818,
2023.

[8] Kanzhi Cheng, Qiushi Sun, Yougang Chu, Fangzhi Xu, Yantao Li, Jianbing Zhang, and Zhiyong
Wu. Seeclick: Harnessing gui grounding for advanced visual gui agents. arXiv preprint
arXiv:2401.10935, 2024.

[9] Xiang Deng, Yu Gu, Boyuan Zheng, Shijie Chen, Samuel Stevens, Boshi Wang, Huan Sun, and
Yu Su. Mind2web: Towards a generalist agent for the web. arXiv preprint arXiv:2306.06070,
2023.

[10] Alexandre Drouin, Maxime Gasse, Massimo Caccia, Issam H Laradji, Manuel Del Verme,
Tom Marty, Léo Boisvert, Megh Thakkar, Quentin Cappart, David Vazquez, et al. Workarena:
How capable are web agents at solving common knowledge work tasks? arXiv preprint
arXiv:2403.07718, 2024.

[11] D. Dupont. GPT-4V-Act: GPT-4 Variant for Active Learning. GitHub repository, 2023. URL
https://github.com/ddupont808/GPT-4V-Act.

[12] Hiroki Furuta, Ofir Nachum, Kuang-Huei Lee, Yutaka Matsuo, Shixiang Shane Gu, and Izzeddin
Gur. Multimodal web navigation with instruction-finetuned foundation models. arXiv preprint
arXiv:2305.11854, 2023.

[13] Difei Gao, Lei Ji, Zechen Bai, Mingyu Ouyang, Peiran Li, Dongxing Mao, Qinchen Wu,
Weichen Zhang, Peiyi Wang, Xiangwu Guo, et al. Assistgui: Task-oriented desktop graphical
user interface automation. arXiv preprint arXiv:2312.13108, 2023.

[14] Yiduo Guo, Zekai Zhang, Yaobo Liang, Dongyan Zhao, and Duan Nan. Pptc benchmark: Evalu-
ating large language models for powerpoint task completion. arXiv preprint arXiv:2311.01767,
2023.

[15] Izzeddin Gur, Hiroki Furuta, Austin Huang, Mustafa Safdari, Yutaka Matsuo, Douglas Eck,
and Aleksandra Faust. A real-world webagent with planning, long context understanding, and
program synthesis. arXiv preprint arXiv:2307.12856, 2023.

[16] Hongliang He, Wenlin Yao, Kaixin Ma, Wenhao Yu, Yong Dai, Hongming Zhang, Zhenzhong
Lan, and Dong Yu. Webvoyager: Building an end-to-end web agent with large multimodal
models. arXiv preprint arXiv:2401.13919, 2024.

[17] Wenyi Hong, Weihan Wang, Qingsong Lv, Jiazheng Xu, Wenmeng Yu, Junhui Ji, Yan Wang,
Zihan Wang, Yuxiao Dong, Ming Ding, et al. Cogagent: A visual language model for gui agents.
arXiv preprint arXiv:2312.08914, 2023.

[18] Peter C Humphreys, David Raposo, Tobias Pohlen, Gregory Thornton, Rachita Chhaparia,
Alistair Muldal, Josh Abramson, Petko Georgiev, Adam Santoro, and Timothy Lillicrap. A
data-driven approach for learning to control computers. In International Conference on Machine
Learning, pages 9466–9482. PMLR, 2022.

[19] Albert Q Jiang, Alexandre Sablayrolles, Antoine Roux, Arthur Mensch, Blanche Savary, Chris
Bamford, Devendra Singh Chaplot, Diego de las Casas, Emma Bou Hanna, Florian Bressand,
et al. Mixtral of experts. arXiv preprint arXiv:2401.04088, 2024.

19

https://github.com/ddupont808/GPT-4V-Act

[20] Carlos E Jimenez, John Yang, Alexander Wettig, Shunyu Yao, Kexin Pei, Ofir Press, and Karthik
Narasimhan. Swe-bench: Can language models resolve real-world github issues? arXiv preprint
arXiv:2310.06770, 2023.

[21] Raghav Kapoor, Yash Parag Butala, Melisa Russak, Jing Yu Koh, Kiran Kamble, Waseem
Alshikh, and Ruslan Salakhutdinov. Omniact: A dataset and benchmark for enabling multimodal
generalist autonomous agents for desktop and web. arXiv preprint arXiv:2402.17553, 2024.

[22] Jing Yu Koh, Robert Lo, Lawrence Jang, Vikram Duvvur, Ming Chong Lim, Po-Yu Huang,
Graham Neubig, Shuyan Zhou, Ruslan Salakhutdinov, and Daniel Fried. Visualwebarena:
Evaluating multimodal agents on realistic visual web tasks. arXiv preprint arXiv:2401.13649,
2024.

[23] Kenton Lee, Mandar Joshi, Iulia Raluca Turc, Hexiang Hu, Fangyu Liu, Julian Martin Eisensch-
los, Urvashi Khandelwal, Peter Shaw, Ming-Wei Chang, and Kristina Toutanova. Pix2struct:
Screenshot parsing as pretraining for visual language understanding. In International Confer-
ence on Machine Learning, pages 18893–18912. PMLR, 2023.

[24] Bowen Li, Wenhan Wu, Ziwei Tang, Lin Shi, John Yang, Jinyang Li, Shunyu Yao, Chen Qian,
Binyuan Hui, Qicheng Zhang, et al. Devbench: A comprehensive benchmark for software
development. arXiv preprint arXiv:2403.08604, 2024.

[25] Hongxin Li, Jingran Su, Yuntao Chen, Qing Li, and Zhaoxiang Zhang. Sheetcopilot: Bring-
ing software productivity to the next level through large language models. arXiv preprint
arXiv:2305.19308, 2023.

[26] Lei Li, Zhihui Xie, Mukai Li, Shunian Chen, Peiyi Wang, Liang Chen, Yazheng Yang, Benyou
Wang, and Lingpeng Kong. Silkie: Preference distillation for large visual language models.
arXiv preprint arXiv:2312.10665, 2023.

[27] Yang Li, Jiacong He, Xin Zhou, Yuan Zhang, and Jason Baldridge. Mapping natural language
instructions to mobile ui action sequences. arXiv preprint arXiv:2005.03776, 2020.

[28] J. C. R. Licklider. Man-computer symbiosis. IRE Transactions on Human Factors in Electronics,
HFE-1(1):4–11, 1960. doi: 10.1109/THFE2.1960.4503259.

[29] Xi Victoria Lin, Chenglong Wang, Luke Zettlemoyer, and Michael D Ernst. Nl2bash: A corpus
and semantic parser for natural language interface to the linux operating system. arXiv preprint
arXiv:1802.08979, 2018.

[30] Evan Zheran Liu, Kelvin Guu, Panupong Pasupat, Tianlin Shi, and Percy Liang. Reinforcement
learning on web interfaces using workflow-guided exploration. arXiv preprint arXiv:1802.08802,
2018.

[31] Haotian Liu, Chunyuan Li, Qingyang Wu, and Yong Jae Lee. Visual instruction tuning. arXiv
preprint arXiv:2304.08485, 2023.

[32] Xiao Liu, Hao Yu, Hanchen Zhang, Yifan Xu, Xuanyu Lei, Hanyu Lai, Yu Gu, Hangliang
Ding, Kaiwen Men, Kejuan Yang, et al. Agentbench: Evaluating llms as agents. arXiv preprint
arXiv:2308.03688, 2023.

[33] Xing Han Lù, Zdeněk Kasner, and Siva Reddy. Weblinx: Real-world website navigation with
multi-turn dialogue. arXiv preprint arXiv:2402.05930, 2024.

[34] Chang Ma, Junlei Zhang, Zhihao Zhu, Cheng Yang, Yujiu Yang, Yaohui Jin, Zhenzhong Lan,
Lingpeng Kong, and Junxian He. Agentboard: An analytical evaluation board of multi-turn llm
agents. arXiv preprint arXiv:2401.13178, 2024.

[35] Meta AI. Introducing meta Llama 3: The most capable openly available LLM to date, April
2024. URL https://ai.meta.com/blog/meta-llama-3/. Accessed: 2024-04-18.

[36] Grégoire Mialon, Clémentine Fourrier, Craig Swift, Thomas Wolf, Yann LeCun, and Thomas
Scialom. Gaia: a benchmark for general ai assistants. arXiv preprint arXiv:2311.12983, 2023.

20

https://ai.meta.com/blog/meta-llama-3/

[37] Reiichiro Nakano, Jacob Hilton, Suchir Balaji, Jeff Wu, Long Ouyang, Christina Kim, Christo-
pher Hesse, Shantanu Jain, Vineet Kosaraju, William Saunders, et al. Webgpt: Browser-assisted
question-answering with human feedback. arXiv preprint arXiv:2112.09332, 2021.

[38] Runliang Niu, Jindong Li, Shiqi Wang, Yali Fu, Xiyu Hu, Xueyuan Leng, He Kong, Yi Chang,
and Qi Wang. Screenagent: A vision language model-driven computer control agent. arXiv
preprint arXiv:2402.07945, 2024.

[39] R OpenAI. Gpt-4 technical report. arxiv 2303.08774. View in Article, 2:13, 2023.

[40] Christopher Rawles, Alice Li, Daniel Rodriguez, Oriana Riva, and Timothy Lillicrap. Android
in the wild: A large-scale dataset for android device control. arXiv preprint arXiv:2307.10088,
2023.

[41] Machel Reid, Nikolay Savinov, Denis Teplyashin, Dmitry Lepikhin, Timothy Lillicrap, Jean-
baptiste Alayrac, Radu Soricut, Angeliki Lazaridou, Orhan Firat, Julian Schrittwieser, et al.
Gemini 1.5: Unlocking multimodal understanding across millions of tokens of context. arXiv
preprint arXiv:2403.05530, 2024.

[42] Andrew Searles, Yoshimichi Nakatsuka, Ercan Ozturk, Andrew Paverd, Gene Tsudik, and
Ai Enkoji. An empirical study & evaluation of modern {CAPTCHAs}. In 32nd USENIX
Security Symposium (USENIX Security 23), pages 3081–3097, 2023.

[43] Peter Shaw, Mandar Joshi, James Cohan, Jonathan Berant, Panupong Pasupat, Hexiang Hu,
Urvashi Khandelwal, Kenton Lee, and Kristina Toutanova. From pixels to ui actions: Learning
to follow instructions via graphical user interfaces. arXiv preprint arXiv:2306.00245, 2023.

[44] Tianlin Shi, Andrej Karpathy, Linxi Fan, Jonathan Hernandez, and Percy Liang. World of
bits: An open-domain platform for web-based agents. In International Conference on Machine
Learning, pages 3135–3144. PMLR, 2017.

[45] Chenglei Si, Yanzhe Zhang, Zhengyuan Yang, Ruibo Liu, and Diyi Yang. Design2code: How
far are we from automating front-end engineering?, 2024.

[46] Abishek Sridhar, Robert Lo, Frank F Xu, Hao Zhu, and Shuyan Zhou. Hierarchical prompting
assists large language model on web navigation. arXiv preprint arXiv:2305.14257, 2023.

[47] Liangtai Sun, Xingyu Chen, Lu Chen, Tianle Dai, Zichen Zhu, and Kai Yu. Meta-gui: Towards
multi-modal conversational agents on mobile gui. arXiv preprint arXiv:2205.11029, 2022.

[48] Weihao Tan, Ziluo Ding, Wentao Zhang, Boyu Li, Bohan Zhou, Junpeng Yue, Haochong
Xia, Jiechuan Jiang, Longtao Zheng, Xinrun Xu, et al. Towards general computer control: A
multimodal agent for red dead redemption ii as a case study. arXiv preprint arXiv:2403.03186,
2024.

[49] Gemini Team, Rohan Anil, Sebastian Borgeaud, Yonghui Wu, Jean-Baptiste Alayrac, Jiahui Yu,
Radu Soricut, Johan Schalkwyk, Andrew M Dai, Anja Hauth, et al. Gemini: a family of highly
capable multimodal models. arXiv preprint arXiv:2312.11805, 2023.

[50] Daniel Toyama, Philippe Hamel, Anita Gergely, Gheorghe Comanici, Amelia Glaese, Zafarali
Ahmed, Tyler Jackson, Shibl Mourad, and Doina Precup. Androidenv: A reinforcement learning
platform for android. arXiv preprint arXiv:2105.13231, 2021.

[51] Sagar Gubbi Venkatesh, Partha Talukdar, and Srini Narayanan. Ugif: Ui grounded instruction
following. arXiv preprint arXiv:2211.07615, 2022.

[52] Junyang Wang, Haiyang Xu, Jiabo Ye, Ming Yan, Weizhou Shen, Ji Zhang, Fei Huang, and
Jitao Sang. Mobile-agent: Autonomous multi-modal mobile device agent with visual perception.
arXiv preprint arXiv:2401.16158, 2024.

[53] Hao Wen, Yuanchun Li, Guohong Liu, Shanhui Zhao, Tao Yu, Toby Jia-Jun Li, Shiqi Jiang,
Yunhao Liu, Yaqin Zhang, and Yunxin Liu. Empowering llm to use smartphone for intelligent
task automation. arXiv preprint arXiv:2308.15272, 2023.

21

[54] Tianbao Xie, Fan Zhou, Zhoujun Cheng, Peng Shi, Luoxuan Weng, Yitao Liu, Toh Jing
Hua, Junning Zhao, Qian Liu, Che Liu, Leo Z. Liu, Yiheng Xu, Hongjin Su, Dongchan
Shin, Caiming Xiong, and Tao Yu. Openagents: An open platform for language agents in
the wild. CoRR, abs/2310.10634, 2023. doi: 10.48550/ARXIV.2310.10634. URL https:
//doi.org/10.48550/arXiv.2310.10634.

[55] An Yan, Zhengyuan Yang, Wanrong Zhu, Kevin Lin, Linjie Li, Jianfeng Wang, Jianwei Yang,
Yiwu Zhong, Julian McAuley, Jianfeng Gao, et al. Gpt-4v in wonderland: Large multimodal
models for zero-shot smartphone gui navigation. arXiv preprint arXiv:2311.07562, 2023.

[56] Jianwei Yang, Hao Zhang, Feng Li, Xueyan Zou, Chunyuan Li, and Jianfeng Gao. Set-of-mark
prompting unleashes extraordinary visual grounding in gpt-4v. arXiv preprint arXiv:2310.11441,
2023.

[57] John Yang, Akshara Prabhakar, Karthik Narasimhan, and Shunyu Yao. Intercode: Standardizing
and benchmarking interactive coding with execution feedback. arXiv preprint arXiv:2306.14898,
2023.

[58] Shunyu Yao, Howard Chen, John Yang, and Karthik Narasimhan. Webshop: Towards scalable
real-world web interaction with grounded language agents. Advances in Neural Information
Processing Systems, 35:20744–20757, 2022.

[59] Chaoyun Zhang, Liqun Li, Shilin He, Xu Zhang, Bo Qiao, Si Qin, Minghua Ma, Yu Kang,
Qingwei Lin, Saravan Rajmohan, et al. Ufo: A ui-focused agent for windows os interaction.
arXiv preprint arXiv:2402.07939, 2024.

[60] Chi Zhang, Zhao Yang, Jiaxuan Liu, Yucheng Han, Xin Chen, Zebiao Huang, Bin Fu, and Gang
Yu. Appagent: Multimodal agents as smartphone users. arXiv e-prints, pages arXiv–2312,
2023.

[61] Danyang Zhang, Lu Chen, and Kai Yu. Mobile-env: A universal platform for training and
evaluation of mobile interaction. arXiv preprint arXiv:2305.08144, 2023.

[62] Danyang Zhang, Lu Chen, Situo Zhang, Hongshen Xu, Zihan Zhao, and Kai Yu. Large language
models are semi-parametric reinforcement learning agents. Advances in Neural Information
Processing Systems, 36, 2024.

[63] Zhuosheng Zhang and Aston Zhang. You only look at screens: Multimodal chain-of-action
agents. arXiv e-prints, pages arXiv–2309, 2023.

[64] Zihan Zhao, Lu Chen, Ruisheng Cao, Hongshen Xu, Xingyu Chen, and Kai Yu. Tie: Topological
information enhanced structural reading comprehension on web pages. In Proceedings of
the 2022 Conference of the North American Chapter of the Association for Computational
Linguistics: Human Language Technologies, pages 1808–1821, 2022.

[65] Boyuan Zheng, Boyu Gou, Jihyung Kil, Huan Sun, and Yu Su. Gpt-4v (ision) is a generalist
web agent, if grounded. arXiv preprint arXiv:2401.01614, 2024.

[66] Shuyan Zhou, Frank F Xu, Hao Zhu, Xuhui Zhou, Robert Lo, Abishek Sridhar, Xianyi Cheng,
Yonatan Bisk, Daniel Fried, Uri Alon, et al. Webarena: A realistic web environment for building
autonomous agents. arXiv preprint arXiv:2307.13854, 2023.

[67] Deyao Zhu, Jun Chen, Xiaoqian Shen, Xiang Li, and Mohamed Elhoseiny. Minigpt-4: En-
hancing vision-language understanding with advanced large language models. arXiv preprint
arXiv:2304.10592, 2023.

22

https://doi.org/10.48550/arXiv.2310.10634
https://doi.org/10.48550/arXiv.2310.10634

A Details of OSWORLD Environment

A.1 Environment Infrastructure

As compared to core commonly used techniques like Docker 6, virtual machines can operate their
own kernel and system, enabling compatibility with a wide variety of operating systems (such as
Windows, macOS, Linux, etc.) across different CPU hardware types (x64, ARM, etc.), and supports
training and evaluation in a multiprocess manner on both headless servers and personal computers.

A.2 Observation Space

We implement three kinds of observation: complete screenshot, accessibility tree and terminal
output. We also implement a video recorder of the environment but don’t put it into our modeling
due to the agent’s ability limitations. OSWORLD supports observation refactoring and extending if
needed, such as getting data from certain opening applications that we want to focus on.

A.2.1 Screenshot

To align with the perception of a human user, we capture a screenshot of the entire computer screen.
Including the mouse cursor also proves helpful in certain cases where mouse information is crucial.
For screen resolution, we default to 1920×1080, as it is the most commonly used screen resolution
according to Internet Users Screen Resolution Realtime Statistics for 20237. This resolution also
offers a 16:9 aspect ratio. OSWORLD also supports modifying the resolution of virtual machines to
avoid potential memorization of absolute pixel values and to assist studies on topics like generalization
across different resolutions.

A.2.2 Accessibility Tree

An accessibility tree (or a11y tree, same logic to kubernetes and k8s), refers to an intricate structure
generated by the browser or OS accessibility APIs that renders a representative model of the web
content, providing a means of interaction for assistive technologies. Each node within the accessibility
tree hosts important information about a UI element. This could range from the nature of the object
(a button, checkbox, or paragraph of text), its current state (checked or unchecked, for checkboxes),
and even its spatial orientation on the screen.

Different operating systems employ varied accessibility APIs and tools to construct and manipulate
the accessibility tree. These include Microsoft Active Accessibility (MSAA) and User Interface
Automation (UIA) for Windows, NSAccessibility Protocol and macOS Accessibility Inspector for
macOS, and Assistive Technology Service Provider Interface (ATSPI) 8 for GNOME dekstop used
on Ubuntu. We adopt pyatspi to get the accessibility tree on Ubuntu and pywinauto on Windows.
We further convert it into XML format for message passing. Partial pieces of the XML formatted
accessibility tree are shown in Figure 11.

Tools such as Accerciser can help visualize the corresponding relationship of tree nodes and GUI
components in the accessibility tree as shown in Figure 12.

A.3 Action Space

We implement two kinds of action space: pyautogui and computer_13. We mainly use pyautogui
action space, since it saves tokens for describing action space definition in prompting, compared with
self-designed actions.

A.3.1 PYAUTOGUI

pyautogui is an open-source, cross-platform Python module utilized for programmatically control-
ling the mouse and keyboard. It can control simple movements, clicks, as well as keyboard inputs,
and can provide screen capture features or locate where the screen-specific images reside that can

6https://www.docker.com/
7https://www.screenresolution.org/year-2023/
8https://docs.gtk.org/atspi2/

23

https://www.docker.com/
https://www.screenresolution.org/year-2023/
https://docs.gtk.org/atspi2/

Figure 11: Raw XML formatted accessibility tree visualization.

Figure 12: Use Accerciser to visualize components in accessibility tree. This example shows
the corresponding relationship between the “Print” button (which is a printer icon on the bar of the
LibreOffice app as shown on the left) and the “Print” tree node (which is the “Print” of the Accerciser
Accessibility Explorer as shown on the right).

be useful for GUI automation. Compared with other Python packages such as xdotool 9, mouse 10

and keyboard 11, pyautogui has better compatibility across different OSes as found in our early
attempts, so that we adapt that as our core component of computer controlling as well as an official
valid action space.

Herein, we will demonstrate some use cases of pyautogui and illustrate how it can be wielded as an
action space.

Mouse Controlling Functions

import pyautogui

move mouse to XY coordinates over num_second seconds
pyautogui.moveTo(x, y, duration=num_seconds)

drag mouse to XY
pyautogui.dragTo(x, y, duration=num_seconds)

9https://github.com/jordansissel/xdotool
10https://github.com/boppreh/mouse
11https://github.com/boppreh/keyboard

24

https://github.com/jordansissel/xdotool
https://github.com/boppreh/mouse
https://github.com/boppreh/keyboard

pyautogui.click(x=moveToX, y=moveToY, clicks=num_of_clicks, button='left')
pyautogui.rightClick(x=moveToX, y=moveToY)
pyautogui.middleClick(x=moveToX, y=moveToY)
pyautogui.doubleClick(x=moveToX, y=moveToY)
pyautogui.tripleClick(x=moveToX, y=moveToY)
pyautogui.scroll(amount_to_scroll, x=moveToX, y=moveToY)
pyautogui.mouseDown(x=moveToX, y=moveToY, button='left')
pyautogui.mouseUp(x=moveToX, y=moveToY, button='left')

Keyboard Controlling Functions

import pyautogui

useful for entering text, newline is Enter
pyautogui.typewrite('Hello world!\n', interval=secs_between_keys)

pyautogui.typewrite(['a', 'b', 'c', 'left', 'backspace', 'enter', 'f1'], interval=secs_between_keys)
pyautogui.hotkey('ctrl', 'c') # ctrl-c to copy
pyautogui.hotkey('ctrl', 'v') # ctrl-v to paste
pyautogui.keyDown(key_name)
pyautogui.keyUp(key_name)

pyautogui as an Action Space Given the various controls it provides, pyautogui can readily be used as
an action space in building automation software or testing interfaces with minor adjustments. More formally, an
action is within the action space when it meets the syntax of pyautogui or is one of three special actions WAIT,
FAIL, and DONE. This might include actions like clicking at a certain location, entering text or key sequences,
or even resting for a span (Pause). Each action could be mapped to an identifying label or number, forming a
discrete action space. For example:

import pyautogui

def perform_action(action):
if action == 0:

pyautogui.moveTo(100, 100)
elif action == 1:

pyautogui.write('Hello world!', interval=0.25)
else:

pyautogui.pause(1)

In this scheme, the "perform_action" function constitutes the action space, where each unique action is associated
with a unique integer (its action ID). The function interprets these action IDs and performs the corresponding
action, forming a rudimentary discrete action space.

One interesting finding is that language models generate screenshot locate functions like:

pyautogui.locateOnScreen('Apple.png')

When there is insufficient grounding evidence (such as when no screenshot is inputted, the accessibility tree lacks
a specific element, or the multimodal model cannot comprehend the user interface), employing this function to
retrieve the correct icon image could present an interesting method.

A.3.2 COMPUTER_13

To facilitate potential reinforcement learning applications, we have created a variant of pyautogui, which
we named computer_13. In this variant, we wrap pyautogui into a finite action class with parameterized
enumeration, such that it features 13 action types, excluding three special ones for task process control. Utilizing
this structured approach allows more effective reinforcement learning by providing a distinct and finite set of
actions to be learned and optimized. As summarized in Table 8, each action type has certain parameters, detailed
in the collection, confirming the type, range, and whether each parameter is optional for that action.

25

Table 8: Action types and parameters defined in action space computer_13, a variance we created
for the potential reinforcement learning research based on our environment.

Action Type Parameters Note
MOVE_TO x, y Move the cursor to the specified position
CLICK button,

x, y,
num_clicks

Click the left button if the button not specified, otherwise click
the specified button; click at the current position if x and y
are not specified, otherwise click at the specified position

MOUSE_DOWN button Press the left button if the button not specified, otherwise press
the specified button

MOUSE_UP button Release the left button if the button not specified, otherwise
release the specified button

RIGHT_CLICK x, y Right click at the current position if x and y are not specified,
otherwise right click at the specified position

DOUBLE_CLICK x, y Double click at the current position if x and y are not specified,
otherwise double click at the specified position

DRAG_TO x, y Drag the cursor to the specified position with the left button
pressed

SCROLL dx, dy Scroll the mouse wheel up or down
TYPING text Type the specified text
PRESS key Press the specified key and release it
KEY_DOWN key Press the specified key
KEY_UP key Release the specified key
HOTKEY keys Press the specified key combination
WAIT - Wait until the next action
FAIL - Decide the task cannot be performed
DONE - Decide the task is done

B Details of OSWORLD Benchmark

B.1 Operating System Selection

As of 2023, the most popular desktop operating systems are Windows (69.5%), macOS (20.4%), ChromeOS
(3.2%), and Linux (3.1%) 12. While Windows and macOS dominate the market share and boast the richest
software ecosystems, their closed-source nature raises potential copyright concerns for direct usage. ChromeOS,
being a web-based operating system, heavily depends on a Google account for its functionalities, rendering it
less suitable for a public benchmark.

In contrast, Linux desktops offer a wealth of open-source software for most daily tasks, supported by an active
community for both basic and advanced use. Essential applications such as Office Suite, browsers, email clients,
multimedia apps, and thousands of games and applications are either pre-installed or readily available through the
software center of the distribution. Consequently, we select Ubuntu, the most representative Linux desktop OS,
as the foundation for the main part of our benchmark intended for public use. Additionally, we have developed
components to facilitate agent interaction on a Windows virtual machine and have created a relatively small set
of examples focusing on the Microsoft Office suite, including Excel, PowerPoint, and Word. This serves as a
counterpart to the LibreOffice suite available on Ubuntu. These components can be utilized in-house or officially
with the purchase of a license. Regarding macOS, theoretically, it is illegal to install macOS on non-Apple
devices, which leads us to refrain from developing our benchmark on this platform to avoid copyright issues.

B.2 Software Selection

Due to the high cost of obtaining operation and evaluation script annotation data, we have chosen a representative
set of software for the examples of Ubuntu part. We adopt standards that consider: 1) Availability - the software
must be available on Ubuntu 22.04; 2) Open-source - the software should be open-sourced with an appropriate
license to prevent copyright issues; 3) Popularity - the software should take a high download number and
frequency of recommendations in blogs and tutorials; 4) Strong user community and good support resources
- it is preferable to have an active and robust user community as well as official documents, which can serve
as ample resources for task collection and agent learning; 5) Diversity of categories - the software should be
diverse to adequately represent and cover a wide range of real-world cases.

12https://www.statista.com/statistics/218089/global-market-share-of-windows-7/

26

https://www.statista.com/statistics/218089/global-market-share-of-windows-7/

As a result, we have shortlisted the software into two categories: general usage and professional usage. For
general usage, we have VLC for media playback, Chrome for web browsing, and Thunderbird for email
management. For professional usage, we have VS Code as a coding IDE, and LibreOffice (Calc, Writer, and
Impress) for handling spreadsheets, documents, and presentations respectively, along with GIMP for image
editing. This brings our total to eight different types of software.

B.3 Task Example Sources

We detail the task example sources in Table 9.

Table 9: Task Example Resources

App Resources Link

OS

Ubuntu Documentations https://help.ubuntu.com/
Ask Ubuntu https://askubuntu.com/
Super User https://superuser.com/
Stack Overflow https://stackoverflow.com
YouTube https://www.youtube.com/

Calc

LibreOffice Help https://help.libreoffice.org/
Microsoft Tech Community https://techcommunity.microsoft.com/
libreofficehelp.com https://www.libreofficehelp.com/
Reddit r/LibreOfficeCal https://www.reddit.com/r/LibreOfficeCalc/
Reddit r/Excel https://www.reddit.com/r/Excel/
Super User https://superuser.com/
Medium https://medium.com/
Quora https://www.quora.com/
YouTube https://www.youtube.com/
Ryan and Debi & Toren Personal Site https://www.ryananddebi.com/

Writer

LibreOffice Help https://help.libreoffice.org/
LibreOffice Forum https://ask.libreoffice.org/
libreofficehelp.com https://www.libreofficehelp.com/
Super User https://superuser.com/
Stack Overflow https://stackoverflow.com
Ask Ubuntu https://askubuntu.com/
Quora https://www.quora.com/
YouTube https://www.youtube.com/
SearchStar Personal Site https://seekstar.github.io/

Impress

LibreOffice Help https://help.libreoffice.org/
libreofficehelp.com https://www.libreofficehelp.com/
Reddit r/LibreOffice https://www.reddit.com/r/LibreOffice/
Super User https://superuser.com/
Stack Overflow https://stackoverflow.com
Technical Tips https://technical-tips.com/
Just Click Here https://justclickhere.co.uk/
TikTok https://www.tiktok.com/

VLC

VLC Documentation https://docs.videolan.me
VLCHelp.com https://www.vlchelp.com/
VideoLAN’s Wiki https://wiki.videolan.org/
Ubuntu Documentations https://help.ubuntu.com/
Reddit r/Fedora https://www.reddit.com/r/Fedora/
Super User https://superuser.com/
Medium https://medium.com/
YouTube https://www.youtube.com/
Dedoimedo https://www.dedoimedo.com/index.html

Thunderbird

Thunderbird Support https://support.mozilla.org/en-US/products/thunderbird
Reddit r/Thunderbird https://www.reddit.com/r/Thunderbird/
Reddit r/Automation https://www.reddit.com/r/automation/
Super User https://superuser.com/
WikiHow https://www.wikihow.com/
Quora https://www.quora.com/
BitRecover https://www.bitrecover.com/
AdSigner https://www.adsigner.com/

Chrome Google Chrome Help https://support.google.com/chrome
Continued on next page

27

https://help.ubuntu.com/
https://askubuntu.com/
https://superuser.com/
https://stackoverflow.com
https://www.youtube.com/
https://help.libreoffice.org/
https://techcommunity.microsoft.com/
https://www.libreofficehelp.com/
https://www.reddit.com/r/LibreOfficeCalc/
https://www.reddit.com/r/Excel/
https://superuser.com/
https://medium.com/
https://www.quora.com/
https://www.youtube.com/
https://www.ryananddebi.com/
https://help.libreoffice.org/
https://ask.libreoffice.org/
https://www.libreofficehelp.com/
https://superuser.com/
https://stackoverflow.com
https://askubuntu.com/
https://www.quora.com/
https://www.youtube.com/
https://seekstar.github.io/
https://help.libreoffice.org/
https://www.libreofficehelp.com/
https://www.reddit.com/r/LibreOffice/
https://superuser.com/
https://stackoverflow.com
https://technical-tips.com/
https://justclickhere.co.uk/
https://www.tiktok.com/
https://docs.videolan.me
https://www.vlchelp.com/
https://wiki.videolan.org/
https://help.ubuntu.com/
https://www.reddit.com/r/Fedora/
https://superuser.com/
https://medium.com/
https://www.youtube.com/
https://www.dedoimedo.com/index.html
https://support.mozilla.org/en-US/products/thunderbird
https://www.reddit.com/r/Thunderbird/
https://www.reddit.com/r/automation/
https://superuser.com/
https://www.wikihow.com/
https://www.quora.com/
https://www.bitrecover.com/
https://www.adsigner.com/
https://support.google.com/chrome

Table 9 – continued from previous page
App Resources

Reddit r/Chrome https://www.reddit.com/r/Chrome/
Super User https://superuser.com/
WikiHow https://www.wikihow.com/
in5steps.com https://in5stepstutorials.com/
How-To Geek https://www.howtogeek.com/
Medium https://medium.com/
Quora https://www.quora.com/
YouTube https://www.youtube.com/
Laptop Mag https://www.laptopmag.com

VS Code

Super User https://superuser.com/
Stack Overflow https://stackoverflow.com
Quora https://www.quora.com/
YouTube https://www.youtube.com/
Campbell Muscle Lab GitHub https://campbell-muscle-lab.github.io/

GIMP

Reddit r/GIMP https://www.reddit.com/r/GIMP/
Super User https://superuser.com/
Stack Overflow https://stackoverflow.com
Quora https://www.quora.com/
Make-Use-Of https://www.makeuseof.com/
YouTube https://www.youtube.com/

Workflow

UniPath Marketplace https://marketplace.uipath.com/
sync.blue https://www.sync.blue/
Device Tests https://devicetests.com/
Make Tech Easier https://www.maketecheasier.com/
Unix & Linux Stack Exchange https://unix.stackexchange.com/
Geeks for Geeks https://www.geeksforgeeks.org/
I Love Free Software https://www.ilovefreesoftware.com/
The Geek Diary https://www.thegeekdiary.com/
Zyxware https://www.zyxware.com/
GNOME Discourse https://discourse.gnome.org/
It’s FOSS https://itsfoss.com/
Super User https://superuser.com/
Stack Overflow https://stackoverflow.com
LibreOffice Forum https://ask.libreoffice.org/
ImpressExtractNotes https://github.com/danielrcollins1/ImpressExtractNotes
Medium https://medium.com/
YouTube https://www.youtube.com/
Kelvin Smith Library https://case.edu/library/

B.4 Task Examples Collection

Here we show the detailed statistics of OSWORLD benchmark, including the main set on Ubuntu (369 in total)
and the analytic set on Windows (43 in total).

Table 10: Detailed statistics of OSWORLD benchmark suite about examples number, average
instruction tokens, infeasible instructions and integrated instructions.

OS Calc Impress Writer VLC Thunderbird Chrome VSCode GIMP Workflow Overall
Examples 24 47 47 23 17 15 46 23 26 101 369
Avg. Inst. Tokens 22.38 33.30 25.19 35.30 35.82 34.07 22.07 20.78 16.23 51.24 33.36
#Infeasible 5 1 0 1 3 1 3 5 10 1 30
#Integrated 7 19 30 0 0 0 26 0 0 2 84

Table 11: Detailed statistics of Windows analytic set benchmark suite. This set contains no infeasible
tasks and integrated tasks.

Excel Word PPT Workflow Overall
Examples 11 9 7 16 43
Avg. Inst. Tokens 19.45 21.44 21.86 47.57 32.48

28

https://www.reddit.com/r/Chrome/
https://superuser.com/
https://www.wikihow.com/
https://in5stepstutorials.com/
https://www.howtogeek.com/
https://medium.com/
https://www.quora.com/
https://www.youtube.com/
https://www.laptopmag.com
https://superuser.com/
https://stackoverflow.com
https://www.quora.com/
https://www.youtube.com/
https://campbell-muscle-lab.github.io/
https://www.reddit.com/r/GIMP/
https://superuser.com/
https://stackoverflow.com
https://www.quora.com/
https://www.makeuseof.com/
https://www.youtube.com/
https://marketplace.uipath.com/
https://www.sync.blue/
https://devicetests.com/
https://www.maketecheasier.com/
https://unix.stackexchange.com/
https://www.geeksforgeeks.org/
https://www.ilovefreesoftware.com/
https://www.thegeekdiary.com/
https://www.zyxware.com/
https://discourse.gnome.org/
https://itsfoss.com/
https://superuser.com/
https://stackoverflow.com
https://ask.libreoffice.org/
https://github.com/danielrcollins1/ImpressExtractNotes
https://medium.com/
https://www.youtube.com/
https://case.edu/library/

Figure 13: Comparison of instructions distribution. All datasets are sampled to 300 to make a fair
comparison. The hyper-parameters of t-SNE are randomly sampled for each plot.

We also visualize the intent distribution (We obtain sentence embeddings for instructions using OpenAI’s
embedding model, and then apply t-SNE to reduce the dimensionality to two dimensions for visualization.) and
compare it with other benchmarks which also focus on the digital agent. We randomly sample 300 examples
from each dataset and randomly choose three different hyperparameters for t-SNE. Visualization results are
shown in Figure 13. From the figure, we can observe that the semantic distribution of the instructions alone
has reached the most comprehensive level. Additionally, our environment remains controllable and executable,
offering a more reliable evaluation. It is also noticeable that the clustering centers of the other three are closely
positioned, whereas the points in our distribution approaches are inconsistent with theirs, indicating that we can
serve as a unique choice for a more comprehensive assessment of the capabilities of future intelligent agents.

B.5 Initial State Setup Details

The setup of the initial state contains three stages: 1) Start emulator. The specified virtual machine is activated
and automatically reverted to the corresponding snapshot, which records the initial system settings of the
machine. 2) Prepare files (Optional). The file or software that specifies the initial state of the task to be executed
is downloaded to the virtual machine and opened. The system is configured to first download the files to the
host through a direct link and then upload them to the VM via a LAN connection. Specifically, some initial
files are set up for OS-related tasks by manipulating the file system directly from the command line. 3) Execute
reprocessing commands (Optional). For tasks that require additional preprocessing, task-specific operations
are executed after the completion of the first two phases. For example, taking the currently open LibreOffice
Impress file to page five, clicking in the center of the screen to return to the main interface, etc. We provide
convenient APIs to configure initial conditions and world settings, standardizing our tasks to make this process
user-friendly and easily extendable.

B.6 Evaluation Configuration Details

In this section, we will show details of preparations for the evaluation of the selected apps (LibreOffice – Calc,
Writer and Impress, Thunderbird, VLC Media Player, Chrome, VS Code, GIMP) and OS (Ubuntu and Windows).

B.6.1 Ubuntu

LibreOffice: Calc, Writer, and Impress LibreOffice is a popular open-source fully-featured office suite
for Linux desktops. Our benchmark is built upon version 7.3.7.2, the version pre-installed in Ubuntu 22.04. Calc,
Writer, and Impress are selected to build tasks on them. As the majority of tasks are to conduct a little revision
to a file, we evaluate these tasks mainly by checking the final result file (in xlsx, docx, or pptx format). The
check can be done by comparing the result file with a golden reference, or inspecting some particular attributes
or settings of the file, e.g.,, page style, freezing, and locale. Usually, the xlsx, docx, and pptx files are mainly
accessed through openpyxl13, python-docx14, and python-pptx15. For some properties not supported by the
current libraries, we also look them up directly via parsing the Office Open XML format16.

Thunderbird Thunderbird is a popular open-source fully-featured email client for Linux desktops. Version
115.6.0 of Thunderbird is pre-installed in Ubuntu 22.04. We crafted an account profile to set up a feasible initial
state. Evaluation for Thunderbird configurations is mainly performed by reading various configurations or data

13https://openpyxl.readthedocs.io/en/stable/
14https://github.com/python-openxml/python-docx
15https://github.com/scanny/python-pptx
16https://learn.microsoft.com/en-us/office/open-xml/about-the-open-xml-sdk

29

https://openpyxl.readthedocs.io/en/stable/
https://github.com/python-openxml/python-docx
https://github.com/scanny/python-pptx
https://learn.microsoft.com/en-us/office/open-xml/about-the-open-xml-sdk

files in the profile folder. An open-source reverse engineering tool Firefox Decrypt17 is adopted to decrypt the
stored account information for evaluation. The involved account information is just for examples and contains
no information about the real person. Besides, there are tasks instructing to help to compose a new email. In
these cases, the accessibility tree is leveraged to inspect the contents in the composing window before really
sending it.

VLC Media Player VLC Media Player is a popular open-source cross-platform multimedia player and
framework that plays most multimedia files. The evaluation for VLC Media Player is multifold, ranging from
utilizing VLC HTTP interface18, reading the VLC configuration file, comparing final result files, and leveraging
accessibility tree to inspect the desired content.

Chrome Google Chrome is one of the most popular and powerful cross-platform web browsers developed
on Google’s free and open-source software project Chromium. The evaluation of Chrome is mainly based on
the utilization of Playwright19, a browser automation library to control Chromium, Firefox, and WebKit with
a single API. To connect Playwright running on host machine with Chrome running on virtual machine, port
transferring tool socat20 is leveraged. Additional information such as the HTML source codes of websites is also
leveraged in the evaluation of some tasks.

VS Code VS Code is a popular open-source multi-functional cross-platform editor for source-code editing.
The evaluation of VS Code tasks is primarily divided into two different categories. One subset of tasks is
predominantly oriented towards file manipulation. In the context of these tasks, a comparative analysis is
conducted between the resultant file and an anticipated reference gold file. Another subset of tasks is centered
around how to utilize the intrinsic functionalities of the VS Code software itself, such as modifying color themes,
initiating workspace sessions, and modifying settings. In these instances, it becomes important to extract relevant
internal information and configurations from the VS Code environment.

In the course of this research, we principally leverage the capabilities offered by the VS Code Extension API21

and information in the settings JSON file22 to obtain the requisite internal signal for the evaluation process. Our
methodology involves the development of a custom VS Code extension, its installation within the VS Code
software deployed on our virtual machine, and the subsequent invocation of the extension’s command each time
an evaluation is required, as well as checking whether the settings JSON has the correct value for a specific key.

GIMP GIMP is an open-source raster graphics editor used for image manipulation, editing, free-form drawing,
format transcoding, and more specialized tasks. The evaluation for GIMP tasks is also mainly divided into two
different categories, just like the VS Code evaluation. One type of task is mainly oriented to file operations.
In these tasks, the resulting files are compared and analyzed with the expected reference golden files, mainly
relying on some powerful image processing libraries such as pillow23. Another category of tasks revolves
around taking advantage of the inherent capabilities of the GIMP software itself. In these instances, we primarily
read GIMP’s configuration files to obtain internal information to evaluate the tasks.

B.7 Windows

Microsoft Office: Excel, Word, and PowerPoint Microsoft Office is the most popular office suite
on Windows desktops. These three components share the same functions with the corresponding LibreOffice
components by and large. They are used to edit xlsx, docx, and pptx files, respectively. Thus, the evaluation for
LibreOffice tasks can be reused for Microsoft Office tasks.

Thunderbird Thunderbird is a cross-platform email client. Only the structure of profile folder on Windows
is sightly different from that on Linux. We thus revised the account profile and reuse it to set up the same initial
state on Windows.

Chrome Chrome is a cross-platform web browser. To evaluate tasks on Chrome, only the port transferring
tool needs to be replaced with Ncat24. Other configurations and the evaluations can be shared with Linux-version
tasks.

17https://github.com/unode/firefox_decrypt
18https://wiki.videolan.org/Control_VLC_via_a_browser/
19https://playwright.dev/
20http://www.dest-unreach.org/socat/,https://linux.die.net/man/1/socat
21https://code.visualstudio.com/api
22https://code.visualstudio.com/docs/getstarted/settings#_settingsjson
23https://pypi.org/project/pillow/
24http://www.dest-unreach.org/socat/

30

https://github.com/unode/firefox_decrypt
https://wiki.videolan.org/Control_VLC_via_a_browser/
https://playwright.dev/
http://www.dest-unreach.org/socat/
https://linux.die.net/man/1/socat
https://code.visualstudio.com/api
https://code.visualstudio.com/docs/getstarted/settings#_settingsjson
https://pypi.org/project/pillow/
http://www.dest-unreach.org/socat/

B.8 More Task Examples

In this section, we curate a collection of examples from various app sets, each characterized by distinct operational
logic and requiring different capabilities. These examples are carefully chosen to illustrate the diverse challenges
and requirements encountered when interacting with different types of applications.

Table 12: More Example Showcase from Each Subset of Domains.

Related
App(s) Instruction(s) Screenshot Abilities

Needed

OS
I want to install Spotify on
my current system. Could you
please help me?

knowledge
of OS; omit
distractions

Calc

Check the names in column
“Names with duplicates” and
put the unique ones in column

“Unique Names”. Keep the origi-
nal order.

massive
elements;
knowledge
tricks or
reasoning
over long
actions

Calc

I have a lookup table for the of-
ficers of each branch. Please,
here is another table in which
I need to fill with the officer
names according the headoffice
(i.e., the branch name). Help me
to complete this.

massive
elements;
knowledge of
formulas and
functions

Calc

Given a partial calendar, please
highlight all the weekends (Sat-
urday & Sunday) by setting
the cell background as red
(#ff0000).

massive
elements;
commonsense
reasoning;
software
tricks

Impress
I closed the slide pannel on the
left and idk how to get it back
please help

software
knowledge;
imagine
about UI
layouts;
overcome
typos in
instruction

Continued on next page

31

Table 12 – continued from previous page
Related
App(s) Task Instruction Screenshot of Initial State Abilities

Needed

Impress

On it Whenever I launch a Li-
breOffice Impress, it uses both
screens, one for current slide
and next slide and another for
actual presentation. What I
want is to use only one moni-
tor which shows presentation. I
dont want the screen with Cur-
rent slide and Next slide so that
it can be used for other purposes.
How should I achieve this?

reason from
unprofessional
phenomenon
expression

Writer
Copy the screenshot 1.png from
the desktop to where my cursor
is located

locate the
position
of cursor;
switch from
desktop and
app

Chrome

Can you help me clean up my
computer by getting rid of all
the tracking things that Amazon
might have saved? I want to
make sure my browsing is pri-
vate and those sites don’t re-
member me.

understanding
the
unprofessional
expression

VLC

I am reading lecture note in
PDF while a music video is
running in VLC media player.
But I find I need to switch to
the player every time I need to
pause/start.Could you help me
change the setting to allow paus-
ing the video using keyboard
shortcut without minimizing the
PDF reader? I want to focus
on the lecture note and don’t be
disturbed by the app switching.

understanding
the
reference
from
unprofessional
expression;
software
knowledge

VLC

Hey, could you turn this video
the right way up for me? And
once it’s flipped around, could
you save it for me with the name

‘1984_Apple.mp4’ on the main
screen where all my files are?

software
knowledge;
spatial
judgment
ability

Continued on next page

32

Table 12 – continued from previous page
Related
App(s) Task Instruction Screenshot of Initial State Abilities

Needed

Thunderbird

Create a local folder called
"Promotions" and create a filter
to auto move the inbox emails
whose subject contains “dis-
count” to the new folder

software
knowledge

Thunderbird

Attach the my AWS bill to the
email. The bill is stored at /aws-
bill.pdf. Don’t close it or send it.
I haven’t finish all the contents.

file
management;
extra
requirement

Thunderbird

I’ve got a bunch of email ac-
counts in Thunderbird, and it’s
a hassle to check them one by
one. Can you show me how to
set up a unified inbox so I can
see all my emails in one place?

deep-hided
feature,
need to be
explored
even by
human users;
pop-up
window

VS Code
Please modify VS Code’s set-
tings to disable error reporting
for Python missing imports.

software
knowledge
to deal with
settings;
reasoning to
understand
the cause
and solution
of the error

VS Code
Please help me install the
autoDocstring extension in VS
Code.

software
knowledge
to deal with
Extensions;
reasoning to
search and
install the
extension
successfully

GIMP
Could you make the background
of this image transparent for
me?

precise and
intricate
operations

Continued on next page

33

Table 12 – continued from previous page
Related
App(s) Task Instruction Screenshot of Initial State Abilities

Needed

GIMP
Help me choose the yellow trian-
gle and position it at the center
of my picture.

spatial
perception
and
reasoning,
as well
as precise
control of
actions

Multiple
(VLC+GIMP)

Could you help me create an
Animated GIF from a video file
using VLC and GIMP from the
source of video “src.mp4”, 5-
second clip beginning at 00:03?

software
knowledge
to undergo
sophisticated
processes
and ability
to process
multi-step
procedure
successfully

Multiple

(ThunderBird+

Writer+Chrome)

Help me export charts, graph or
other images from docx files re-
ceived in email “Lecture Docu-
ment” in Notes folder and up-
load these png files to the fig-
ures/ folder in Google Drive for
later use (use numbers to name
them).

ability to
selectively
export
charts,
graphs and
images from
docx file;
software
knowledge
for google
drive file
upload

Multiple
(Chrome+Calc)

Could you help me extract data
in the table from a new invoice
uploaded to my Google Drive,
then export it to a Libreoffice
calc .xlsx file in the desktop?

ability
to do
table data
extraction;
export data
to .xlsx
file

C Details of Baseline Methods

C.1 Hyper-Parameter of the Baseline Agents

We utilize the versions of gpt-3.5-turbo-16k, gpt-4-0125-preview, and gpt-4-vision-preview, re-
spectively for GPT results, need to be noted that result could be changed from time since it is close-sourced.
We also employ the gemini-pro and gemini-pro-vision versions for the Gemini models For all language
models, we set the temperature parameter to 1.0, and top_p to 0.9, and the maximum number of tokens for
generation is set to 1500. We set the maximum steps of interaction to 15 and the maximum time limits to 30
minutes for all tasks since the agent could lead to a stuck environment under some unexpected cases.

34

C.2 Prompt Details

C.2.1 Prompt for A11y Tree, Screenshot and their Combination Setting

You are an agent which follow my instruction and perform desktop computer
tasks as instructed.↪→

You have good knowledge of computer and good internet connection and assume
your code will run on a computer for controlling the mouse and keyboard.↪→

For each step, you will get an observation of an image, which is the
screenshot of the computer screen and you will predict the action of the
computer based on the image.

↪→
↪→

You are required to use `pyautogui` to perform the action grounded to the
observation, but DONOT use the `pyautogui.locateCenterOnScreen` function
to locate the element you want to operate with since we have no image of
the element you want to operate with. DONOT USE `pyautogui.screenshot()`
to make screenshot.

↪→
↪→
↪→
↪→
Return one line or multiple lines of python code to perform the action each

time, be time efficient. When predicting multiple lines of code, make
some small sleep like `time.sleep(0.5);` interval so that the machine
could take; Each time you need to predict a complete code, no variables
or function can be shared from history

↪→
↪→
↪→
↪→
You need to to specify the coordinates of by yourself based on your

observation of current observation, but you should be careful to ensure
that the coordinates are correct.

↪→
↪→
You ONLY need to return the code inside a code block, like this:
```python
# your code here
```
Specially, it is also allowed to return the following special code:
When you think you have to wait for some time, return ```WAIT```;
When you think the task can not be done, return ```FAIL```, don't easily say

```FAIL```, try your best to do the task;↪→
When you think the task is done, return ```DONE```.

My computer's password is 'password', feel free to use it when you need sudo
rights.↪→

First give the current screenshot and previous things we did a short
reflection, then RETURN ME THE CODE OR SPECIAL CODE I ASKED FOR. NEVER
EVER RETURN ME ANYTHING ELSE.

↪→
↪→

For a11y tree setting and a11y tree + screenshot setting, the prompts are basically the same, just replace the
screenshot words with a11y tree words.

C.2.2 Prompt for SoM Setting

You are an agent which follow my instruction and perform desktop computer
tasks as instructed.↪→

You have good knowledge of computer and good internet connection and assume
your code will run on a computer for controlling the mouse and keyboard.↪→

For each step, you will get an observation of the desktop by 1) a screenshot
with interact-able elements marked with numerical tags; and 2)
accessibility tree, which is based on AT-SPI library. And you will
predict the action of the computer based on the image and text
information.

↪→
↪→
↪→
↪→

You are required to use `pyautogui` to perform the action grounded to the
observation, but DONOT use the `pyautogui.locateCenterOnScreen` function
to locate the element you want to operate with since we have no image of
the element you want to operate with. DONOT USE `pyautogui.screenshot()`
to make screenshot.

↪→
↪→
↪→
↪→

35



You can replace x, y in the code with the tag of the element you want to
operate with. such as:↪→

```python
pyautogui.moveTo(tag_3)
pyautogui.click(tag_2)
pyautogui.dragTo(tag_1, button='left')
```
When you think you can directly output precise x and y coordinates or there

is no tag on which you want to interact, you can also use them directly.↪→
But you should be careful to ensure that the coordinates are correct.
Return one line or multiple lines of python code to perform the action each

time, be time efficient. When predicting multiple lines of code, make
some small sleep like `time.sleep(0.5);` interval so that the machine
could take; Each time you need to predict a complete code, no variables
or function can be shared from history

↪→
↪→
↪→
↪→
You need to to specify the coordinates of by yourself based on your

observation of current observation, but you should be careful to ensure
that the coordinates are correct.

↪→
↪→
You ONLY need to return the code inside a code block, like this:
```python
your code here
```
Specially, it is also allowed to return the following special code:
When you think you have to wait for some time, return ```WAIT```;
When you think the task can not be done, return ```FAIL```, don't easily say

```FAIL```, try your best to do the task;↪→
When you think the task is done, return ```DONE```.

My computer's password is 'password', feel free to use it when you need sudo
rights.↪→

First give the current screenshot and previous things we did a short
reflection, then RETURN ME THE CODE OR SPECIAL CODE I ASKED FOR. NEVER
EVER RETURN ME ANYTHING ELSE.

↪→
↪→

C.3 Accessibility Tree Filtering

Since the original tree is large (usually over 1 million tokens in XML format), we filter the accessibility tree
nodes by their tags, visibilities, availabilities, etc. The concrete rules are illustrated in the following Table 13.

Table 13: Criteria for keeping a11y tree nodes on Ubuntu and Windows platforms

Condition Ubuntu Windows

Node Tags document∗, ∗item, ∗button,
∗heading, ∗label, ∗scrollbar,
∗searchbox, ∗textbox, ∗link,
∗tabelement, ∗textfield, ∗textarea,
∗menu, alert, canvas, check-
box, combo-box, entry, icon,
image, paragraph, scroll-bar,
section, slider, static, table-cell,
terminal, text, netuiribbontab,
start, trayclockwclass, tray-
dummysearchcontrol, uiimage,
uiproperty, uiribboncommandbar

Same as Ubuntu

Showing True Not Applicable

Visible True True

Enabled or Editable or Expand-
able or Checkable

True True

Has Name or Text or Image True True

36

Condition Ubuntu Windows

Position >= 0 >= 0

Size > 0 > 0

C.4 Set-of-Mark Implementation Details

Our methodology involves an initial transformation of the original observational image acquired from our
environment into the standardized SoM format and be putted into VLMs together with a table of the marks
with metadata information such as tags and names. This format consists of bounding boxes that bound the
sub-images of interest, each associated with a corresponding integer mark. Notably, our approach incorporates
the utilization of the accessibility tree to identify the bounding boxes associated with all clickable buttons within
the current image observation, instead of using segmentation models like the original SoM paper. Some examples
of screenshots after applying SoM are shown in Figure 14. We can observe the emergence of some low-quality,
unmodelable tasks, and even misleading bounding boxes, depending on the level of support from the software
ecosystem. This could be another reason for the poor performance of SoM. Future improvements could be made
in this regard.

Figure 14: Showcase of example screenshots marked by SoM across different app GUI.

C.5 Full Results of Baseline Methods

Here we show the break-down results of baseline methods from different LLMs and VLMs for follow-up
reference.

We have also compiled the distribution of steps taken by the GPT-4V model under our four settings: Accessibility
Tree (A11y Tree), Screenshot, Screenshot combined with Accessibility Tree (Screenshot+A11y Tree), and
Set-of-Mark. This data (as shown in Fig. 15) provides potential clues for future work. Overall, there are
observable differences in how many steps the agent chooses to execute and when it decides to terminate under
different settings. More detailed control and analysis of these behaviors can be explored in subsequent research
efforts.

D Examples of Qualitative Analysis

Here we give the specific code execution process for the examples in the qualitative analysis in §5.4 and add
more error cause analysis, trying to get insights for further improvement.

37

1 2 3 4 5 6 7 8 9 10 11 12 13 14 >=15
0

20

40

60

80

100

Co
un

t

A11y Tree

1 2 3 4 5 6 7 8 9 10 11 12 13 14 >=15
0

50

100

150

200

Co
un

t

Screenshot

1 2 3 4 5 6 7 8 9 10 11 12 13 14 >=15
0

20

40

60

80

100

120

Co
un

t

Screenshot+A11y Tree

1 2 3 4 5 6 7 8 9 10 11 12 13 14 >=15
0

25

50

75

100

125

150

175

200

Co
un

t

Set-of-Mark

Figure 15: Distribution of steps taken by the GPT-4V based agents across four different settings.

D.1 Success and Failure Cases

Success Task: I downloaded an episode of Friends to practice listening, but I don’t know how
to remove the subtitles. Please help me remove the subtitles from the video and export it as
"subtitles.srt" and store it in the same directory as the video.

Action 1
import pyautogui
import time
Move the mouse to the top bar of the media player window to access the menu
pyautogui.moveTo(800, 10)
Assuming the menu is at the top of the screen
pyautogui.click()
time.sleep(0.5)

Action 2
Move the mouse to the Activities corner to open the GNOME Activities Overview
pyautogui.moveTo(10, 10)
Assuming the Activities corner is at the top-left
pyautogui.click()
Type `terminal' to search for the Terminal application
pyautogui.write(`terminal')
time.sleep(0.5)
Press Enter to open the Terminal application
pyautogui.press(`enter')

Action 3
Focus the Terminal window and type the command to extract subtitles
pyautogui.click(640, 360)
Clicking in the center of the screen to focus the Terminal
time.sleep(0.5)
pyautogui.write(`ffmpeg -i video.mp4 -map 0:s:0 subtitles.srt')
pyautogui.press(`enter')

Action 4
Focus the Terminal window and type the command
to create a new video without subtitles

38

Table 14: Detailed success rates of baseline LLM and VLM agents on OSWORLD, divided by apps
(domains): OS, LibreOffice Calc, LibreOffice Impress, LibreOffice Writer, Chrome, VLC Player,
Thunderbird, VS Code, GIMP and Workflow which is comprehensive with multiple apps, for gaining
insights from interfaces and operation logics.

Inputs Model Success Rate (↑)
OS Calc ImpressWriter VLC TB ChromeVSC GIMP Workflow

A11y Mixtral-8x7B 12.50 0.00 0.39 4.34 10.22 6.67 2.17 8.69 3.85 0.10
GPT-3.5 4.17 2.13 6.77 4.35 6.53 0.00 2.17 0.00 0.00 1.62

Gemini-Pro 4.17 0.00 2.13 4.35 12.41 0.00 2.17 0.00 7.69 0.63
GPT-4 20.83 0.00 6.77 4.35 23.53 26.67 26.09 30.43 23.08 2.97

Gemini-Pro-1.5 12.50 2.13 2.13 4.35 6.53 0.00 10.87 8.70 0.00 3.60
Llama-3-70B 4.17 0.00 0.39 8.70 6.53 0.00 2.17 0.00 0.00 0.63

GPT-4o 20.83 6.38 6.77 8.69 12.41 20.00 17.39 21.74 11.54 7.56
Qwen-Max 29.17 0.00 2.52 13.04 8.95 0.00 10.87 8.70 11.54 2.61

Screen CogAgent 4.17 0.00 0.00 4.34 6.53 0.00 2.17 0.00 0.00 0.00
Gemini-ProV 8.33 0.00 6.77 4.35 12.41 0.00 6.52 8.70 23.08 2.08

GPT-4V 12.50 0.00 2.52 4.35 18.34 0.00 6.52 0.00 7.69 6.04
Claude-3-Opus 4.17 0.00 2.52 4.34 6.53 0.00 2.17 0.00 3.84 2.61
Gemini-Pro-1.5 12.50 0.00 13.16 8.70 6.53 0.00 2.17 0.00 11.54 3.60

GPT-4o 8.33 0.00 6.77 4.35 16.10 0.00 4.35 4.35 3.85 5.58

Screen CogAgent 4.17 2.17 0.00 4.35 6.53 0.00 2.17 0.00 0.00 0.10
+ A11y Gemini-ProV 4.17 2.13 6.77 4.35 18.30 0.00 4.35 0.00 0.00 1.52

GPT-4V 16.67 0.00 6.77 21.73 24.18 33.33 21.74 21.74 15.38 4.59
Claude-3-Opus 12.50 2.13 4.65 4.34 18.30 0.00 2.17 8.69 7.69 0.99
Gemini-Pro-1.5 12.50 0.00 4.65 8.70 12.41 0.00 8.70 4.35 11.54 1.56

GPT-4o 41.67 4.26 6.81 8.70 9.50 6.67 15.22 30.43 0.00 7.46

SoM CogAgent 4.17 2.17 0.00 4.34 6.53 0.00 2.17 0.00 0.00 0.00
Gemini-ProV 4.17 0.00 0.39 4.34 6.53 0.00 0.00 0.00 0.00 0.63

GPT-4V 8.33 8.51 6.38 13.04 10.66 33.33 23.91 17.39 11.54 6.57
Claude-3-Opus 12.50 2.13 0.39 8.70 6.53 13.33 17.39 0.00 11.54 4.49
Gemini-Pro-1.5 16.67 0.00 10.64 4.35 24.18 13.33 8.70 4.35 15.38 3.60

GPT-4o 20.83 0.00 6.77 4.35 6.53 0.00 4.35 4.35 0.00 3.60

Human Performance 75.00 61.70 80.85 73.91 70.59 46.67 78.26 73.91 73.08 73.27

pyautogui.click(1100, 350)
Clicking inside the Terminal window to focus it
pyautogui.write(`ffmpeg -i video.mp4 -c copy -sn no_subtitles_video.mp4')

Done!

Failure Task: Help me center align the heading in LibreOffice.

Action 1
import pyautogui
import time
Move the mouse to the LibreOffice Writer document icon and double-click
pyautogui.moveTo(1100, 720, duration=1)
pyautogui.doubleClick()

Action 2
Move the mouse to the beginning of the heading text
and click and drag to select the heading
pyautogui.moveTo(200, 230, duration=1)

39

pyautogui.mouseDown()
pyautogui.moveTo(800, 230, duration=1)
pyautogui.mouseUp()
Move the mouse to the center align button in the toolbar and click
pyautogui.moveTo(400, 150, duration=1)
pyautogui.click()

Action 3
Assuming the text is still selected,
move the mouse to the center align button in the toolbar and click
pyautogui.moveTo(400, 150, duration=1)
pyautogui.click()

Action 4
Move the mouse to the center align button in the toolbar and click
pyautogui.moveTo(340, 80, duration=1)
pyautogui.click()

Failed.

Task Instruction: tone down the brightness of the photo

Task Instruction: fill in the location of these meetings in the form

Task Instruction: make Bing the main search engine

Step 1: pyautogui.click(focus_x, focus_y) Step 2: pyautogui.click(color_x, color_y) Step 3: pyautogui.click(cancel_x, cancel_y) Step 4: pyautogui.click(x, y), Failed

Step 1: pyautogui.click(focus_x, focus_y) Step 2: pyautogui.typewrite('Scottsdale', interval=0.5)
…

Step 3: pyautogui.select(c11_x, c11_y) … Step 4: Failed

Step 1: pyautogui.click(google_x, google_y) Step 2: pyautogui.click(settings_x,
settings_y)

Step 3 :pyautogui.typewrite(
'chrome://settings/searchEngines')

Step 4: pyautogui.hotkey('tab', 'enter'), Failed

+

+

Figure 16: The figure shows examples of usage errors in three types of software. The first row is for
GIMP, the second row is for LibreOffice Calc, and the third row is for Google Chrome. Detailed code
execution processes are provided below.

GIMP Task: Could you tone down the brightness of my photo?

Action 1
import pyautogui
import time
Coordinates for the image icon on the desktop
Adding half of the width and height to get the center
image_icon_x, image_icon_y = 1793 + 60, 920 + 17
Double-click on the image icon
pyautogui.doubleClick(image_icon_x, image_icon_y)

Action 2
Coordinates for the `Colors' menu

40

Adding half of the width and height to get the center
colors_menu_x, colors_menu_y = 344 + 28, 64 + 12
Click on the `Colors' menu
pyautogui.click(colors_menu_x, colors_menu_y)

Action 3
Coordinates for the `Brightness-Contrast...' option in the `Colors' dropdown
Assuming each menu item is approximately 28 pixels apart
brightness_contrast_option_x, brightness_contrast_option_y
= 344 + 28, 64 + 12 + 28 * 6
Click on the `Brightness-Contrast...' option
pyautogui.click(brightness_contrast_option_x, brightness_contrast_option_y)

Action 4
Coordinates for the `Cancel' button in the `Shadows-Highlights' dialog
Adding half the width and height to get the center
cancel_button_x, cancel_button_y = 375 + 42, 625 + 16
Click the `Cancel' button
pyautogui.click(cancel_button_x, cancel_button_y)
Coordinates for the `Brightness-Contrast...' option in the `Colors' dropdown
Adjusted index for Brightness-Contrast option
brightness_contrast_option_x, brightness_contrast_option_y
= 344 + 28, 64 + 12 + 28 * 5
pyautogui.click(brightness_contrast_option_x, brightness_contrast_option_y)

Action 5
Coordinates for the `Cancel' button in the `Exposure' dialog
Adding half the width and height to get the center
cancel_button_x, cancel_button_y
= 375 + 42, 391 + 16
pyautogui.click(cancel_button_x, cancel_button_y)
Coordinates for the `Brightness-Contrast...' option in the `Colors' dropdown
Adjusted index for Brightness-Contrast option
brightness_contrast_option_x, brightness_contrast_option_y
= 344 + 28, 64 + 12 + 28 $*$ 6
pyautogui.click(brightness_contrast_option_x, brightness_contrast_option_y)

Action 6
Coordinates for the `Cancel' button in the `Color Balance' dialog
Adding half the width and height to get the center
cancel_button_x, cancel_button_y
= 375 + 42, 588 + 16
pyautogui.click(cancel_button_x, cancel_button_y)
Since the `Brightness-Contrast...' option was not correctly opened before,
we will use an estimated position based on the dropdown menu.
Assuming `Brightness-Contrast...' is the second option in the `Colors' menu.
brightness_contrast_option_x, brightness_contrast_option_y
= colors_menu_x, colors_menu_y + 28 * 2
pyautogui.click(brightness_contrast_option_x, brightness_contrast_option_y)

Action 7
Coordinates for the `Cancel' button in the `Color Temperature' dialog
Adding half the width and height to get the center
cancel_button_x, cancel_button_y = 375 + 42, 403 + 16
pyautogui.click(cancel_button_x, cancel_button_y)
Since the `Brightness-Contrast...' option was not correctly opened before,
we will use an estimated position based on the dropdown menu.
Assuming `Brightness-Contrast...' is the second option in the `Colors' menu.
brightness_contrast_option_x, brightness_contrast_option_y
= colors_menu_x, colors_menu_y + 28 * 2
Click on the `Brightness-Contrast...' option
pyautogui.click(brightness_contrast_option_x, brightness_contrast_option_y)

41

... More Wrong Duplicate Actions; Can not find the right coordination.

Failed

Libreoffice calc Task: I now want to count the meeting cities of the three machine learning
conferences in the past ten years from 2013 to 2019(including 2013 and 2019). I have listed
the names and years of the conferences in excel. Please fill in the vacant locations.

Action 1
Move to cell C2 which is the first empty cell under `City' for ICLR 2013
pyautogui.click(319, 222)
Coordinates of cell C2
time.sleep(0.5)
Type the city name for ICLR 2013
pyautogui.write(`Scottsdale')
Press Enter to move to the next cell
pyautogui.press('enter')

Action 2
Move to cell C3 which is the city cell for ICML 2013
pyautogui.click(319, 268)
Coordinates of cell C3
Type the city name for ICML 2013
pyautogui.write(`Atlanta')
Press Enter to move to the next cell
pyautogui.press('enter')

Action 3
Move to cell C4 which is the city cell for NeurIPS 2013
pyautogui.click(319, 289)
Coordinates of cell C4
Type the city name for NeurIPS 2013
pyautogui.write(`Lake Tahoe')
Press Enter to move to the next cell
pyautogui.press('enter')"

... More copy-and-paste operations

Action 15
Move to cell C16 which is the city cell for NeurIPS 2017
pyautogui.click(319, 541)
Coordinates of cell C16
Type the city name for NeurIPS 2017
pyautogui.write(`Long Beach')
Press Enter to move to the next cell
pyautogui.press('enter')

Failed.

Chrome Task: Can you make Bing the main search thingy when I look stuff up on the internet?

Action 1
pyautogui.click(x=1280, y=50)
Approximate coordinates for the `More' button
pyautogui.move(0, 150)
Moving the cursor down to `Settings' in the drop-down menu
pyautogui.click()
Clicking on `Settings'

Action 2

42

pyautogui.click(tag_31)
Click on the `Finish update' button to
approximate the location of `More' button
pyautogui.move(-50, 0)
Move left from the `Finish update' button to approximate the `More' button
pyautogui.click()
Click on the `More' button
time.sleep(0.5)
pyautogui.move(0, 150)
Move down to the `Settings' option in the drop-down menu
pyautogui.click()
Click on `Settings'

Action 3
Click on the `Customise Chrome' button which should be the `More' button
time.sleep(1)
Wait for the dropdown menu to appear
The `Settings' option is usually located towards the bottom of
the dropdown menu, so I'll move the cursor down to reach it
pyautogui.move(0, 200)
Move down to the `Settings' option in the drop-down menu
pyautogui.click()
Click on `Settings'

Action 4
pyautogui.click(tag_47)
Click on the `Close' button to close the `Customise Chrome' menu
pyautogui.click(tag_25)
Click on the `New Tab' button to open a new tab
time.sleep(1)
Wait for the new tab to open
pyautogui.typewrite(`chrome://settings/searchEngines')
Type the direct URL to the search engine settings page
pyautogui.press(`enter')

Action 5
Simulate pressing the `Tab' key multiple times to navigate through the options
for _ in range(10):
Assuming it might take around 10 tabs to reach the search engine list

pyautogui.press(`tab')
time.sleep(0.5)

Wait for the focus to move to the next element
Simulate pressing the `Enter' key to select an option,
which would be done once we reach the Bing option
pyautogui.press('enter')

Action 6
pyautogui.click(tag_42)
Click on the `Cancel' button to exit the edit mode for the '360' search engine

Failed.

43

D.2 Common Errors by GPT-4V Agents

In the following two figures (Figure 18 and Figure 17), we take the web page tasks as examples to show the two
most common types of errors in GPT4-V: mouse click inaccuracies and inadequate handling of environmental
noise.

Task Instruction: On next Monday, look up a flight from Mumbai to Stockholm.

Figure 17: The error shown in the figure is due to mouse click inaccuracies. The agent was supposed
to click on the product category images of the Nike official store and follow the instructions to
search for women’s jerseys priced over 60 dollars. However, due to a coordinate calculation error, it
mistakenly clicked on the favorite button, creating a significant discrepancy between the current state
and the target state. Under these circumstances, the agent is unable to backtrack to the previous state
and start over.

Task Instruction: Browse the list of women's Nike jerseys over $60.

Figure 18: The error shown in the figure is due to inadequate handling of environmental noise. When
the agent encounters web pages with cookies or pop-up ads, its unfamiliarity with the structure of
such pages leads to attempts to interact directly with the web page without bypassing the cookies or
pop-ups. Since the pop-ups or cookie requests are not closed, all actions are ineffective.

44

D.3 Discrepancies in Task Difficulty between Agent and Human

 Task Instruction: bold the font on this slide and add note

Task Instruction: monitor the system CPU for 30s and output the results

Task Instruction: force close a process

Step 1: pyautogui.click(focus_x, focus_y) Step 2: pyautogui.click(bold_x, bold_y) Step 3: pyautogui.typewrite('Team Members') Step 4: pyautogui.click(bold_x, bold_y) , Failed

Step 2: pyautogui.click(focus_x, focus_y) Step 4: DoneStep 1: pyautogui.click(terminal_x, terminal_y)

Step 2: pyautogui.click(focus_x, focus_y) Step 3: pyautogui.typewrite('pkill soffice.bin') Step 4: DoneStep 1: pyautogui.hotkey('ctrl', 'alt', 't')

Step 3: pyautogui.typewrite('sar 1 30 > …')

Figure 19: Supplementary examples of tasks performed by humans and agents.

Human > Agent Task: erase all the highlighted marks in this document

Action 1
import pyautogui
import time
Move to the `Character Highlighting Color' button and click
pyautogui.moveTo(1020, 122)
pyautogui.click()

Action 2
Assuming the `No Color' option is the first option in the dropdown
Move the mouse slightly below the `Character Highlighting Color' button
to click on `No Color'
pyautogui.moveTo(1020, 180)
time.sleep(0.5)
pyautogui.click()

Action 3
Move to the `Save' button and click
pyautogui.moveTo(184, 108)
time.sleep(0.5)
pyautogui.click()

Failed.

Human > Agent Task: On page 2, add a note same to the title into the slide. Make the font of
title bold.

Action 1
Click on the vertical scrollbar to scroll down and reveal more slides
pyautogui.click(tag_43)

Action 2
Click on the second slide thumbnail to select it

45

pyautogui.click(tag_2)

Action 3
Click on the text box to add text
pyautogui.click(tag_42)
pyautogui.typewrite(`Team Members', interval=0.1)
Type the title
pyautogui.hotkey(`ctrl', `a')
Select all text
pyautogui.hotkey(`ctrl', `b')
Make the text bold

Action 4
Click on the Bold button to apply bold formatting
pyautogui.click(tag_68)

Failed.

Agent > Human Task: use GIMP to cut out the 2s to 4s part of a video

Action 1
import pyautogui
import time
Move the mouse to the assumed terminal icon position
at the bottom of the dock and click to open it
Assuming the terminal icon is at the bottom of the dock
pyautogui.moveTo(70, 1350, duration=1)
pyautogui.click()
Type the command to use ffmpeg to trim the video
ffmpeg_command = `ffmpeg -ss 00:00:02 -to 00:00:04 -i /home/user/fullvideo.mp4
-c copy /home/user/trimmedvideo.mp4'
pyautogui.write(ffmpeg_command, interval=0.05)
pyautogui.press('enter')

Action 2
Close the search dialog
pyautogui.press('esc')
Open the terminal using a keyboard shortcut (Ctrl+Alt+T is a common shortcut
for opening a terminal in many Linux distributions)
pyautogui.hotkey('ctrl', 'alt', 't')

Action 3
Move the mouse to the terminal and click to focus on the terminal window
pyautogui.moveTo(260 + 722/2, 103 + 434/2, duration=1)
pyautogui.click()
Type the command to use ffmpeg to trim the video
pyautogui.write(ffmpeg_command, interval=0.05)
pyautogui.press(`enter')

Done, but not follow the demanding in instruction.

Agent > Human Task: I want to understand the resource usage of my Ubuntu system under
normal workloads. Please use the ‘sar‘ command in the ‘sysstat‘ toolkit to monitor system
activity, evaluate the status once every second for 30 seconds, output the results to "System
Resources Report.txt" under Desktop.

Action 1
import pyautogui
import time

46

Press the keyboard shortcut to open the terminal
pyautogui.hotkey(`ctrl', `alt', `t')
time.sleep(1)
Wait a moment for the terminal to open

Action 2
Click inside the terminal to focus on it
pyautogui.click(600, 300)
Assuming the terminal is in the upper left area of the screen
n# Type the command to monitor system activity
pyautogui.typewrite(`sar 1 30 > ~/Desktop/System Resources Report.txt')

Action 3
Click on the `System Resources Report.txt' file to select it
pyautogui.click(1850, 940)
Coordinates taken from the label position and size
time.sleep(0.5)
Right-click to open the context menu
pyautogui.click(1850, 940, button=`right')
Move to the `Open With Other Application' option in the context menu
pyautogui.move(0, 70)
Assuming `Open With Other Application' is 70 pixels
down from the right-click position
Click on `Open With Other Application'
pyautogui.click()
time.sleep(0.5)
Type `gedit' to select the text editor
pyautogui.typewrite(`gedit')
Press `Enter' to open the file with gedit
pyautogui.press(`enter')

Action 4
Click inside the terminal to ensure it's in focus
pyautogui.click(500, 200)
Coordinates are estimated to be within the terminal window
Type the command to open the file with gedit
pyautogui.typewrite(`gedit ~/Desktop/System Resources Report.txt')

Done!

Agent > Human Task: Hey, my LibreOffice Writer seems to have frozen and I can’t get it to
close normally. Can you help me force quit the application from the command line? I’m on
Ubuntu and I don’t want to restart my computer or lose any other work I have open.

Action 1
import pyautogui
import time
Open a terminal window
pyautogui.hotkey(`ctrl', `alt', `t')
time.sleep(1)
Type the command to kill all instances of LibreOffice Writer
pyautogui.typewrite(`killall soffice.bin')

Action 2
Open a terminal window
pyautogui.hotkey(`ctrl', `alt', `t')
time.sleep(1)
Type the command to kill all instances of LibreOffice Writer
pyautogui.typewrite(`killall soffice.bin')

Action 3

47

Ensure the terminal window is focused
pyautogui.click(500, 200)
Assuming the terminal is at this position
Type the pkill command to forcefully kill the LibreOffice Writer application
pyautogui.typewrite(`pkill -9 soffice.bin')

Done!

D.4 Comparative Analysis: Claude-3 vs. GPT-4V

Task Instruction: find the path of the file named "secret.docx" and copy it to the clipboard.

copy the data in Cell B6 in this Libreoffice Calc file and search it in the Chrome browser.

change all the places in this document that say \"text\" to \"test\".

Step 1: pyautogui.click(folder_x, folder_y) Step 2: pyautogui.click(grid_x, grid_y) Step 3: pyautogui.typewrite('secret.docx') Step 4: pyautogui.doubleClick(x, y), Failed

Step 1: pyautogui.click(C6_x, C6_y) Step 2: pyautogui.click(chrome_x, chrome_y)
…

Step 3: pyautogui.click(C6_x’, C6_y’) … Step 4: pyautogui.typewrite('Dewitt'), Failed

Step 1: pyautogui.click(focus_x, focus_y) Step 2: pyautogui.hotkey('control', 'f') … Step 3: pyautogui.hotkey('control', 's') … Step 4: 'Wait', Failed

Figure 20: Screenshots of error example analysis of Claude-3 Opus.

Claude3 Failed Task1: I remember there is a file named "secret.docx" on this computer, but I
can’t remember where it is. Please find the path where this file is stored and copy it to the
clipboard.

Action 1
pyautogui.click(tag_10)
click the Files icon to open the file manager

Action 2
pyautogui.click(tag_21)
click the search icon to open the search bar

Action 3
pyautogui.typewrite(`secret.docx')
type the file name to search for
pyautogui.press(`enter')
press enter to start the search

Action 4
pyautogui.doubleClick(tag_52)
double click the secret.docx file to select it
pyautogui.hotkey(`ctrl', 'c')
press Ctrl+C to copy the selected file path to clipboard

Failed.

48

Claude3 Failed Task2: copy the data in Cell B6 in this Libreoffice Calc file and search it in
the Chrome browser.

Action 1
import pyautogui
import time
Scroll down to view more search results if needed
pyautogui.press(`pagedown')
time.sleep(1)
pyautogui.press(`pagedown')
time.sleep(2)
The answer appears to be in the snippet under the first search result
`TV 31. u76f4u64adu4e2d.' which translates to `TV 31. Live.'
So channel 31 in Hong Kong is RTHK TV 31
print(`Found the answer. Channel 31 in Hong Kong is RTHK TV 31.')
The original task of copying cell B36 from the spreadsheet
and searching it in the browser is complete
print(`Task complete.')

Action 2
Activate the Chrome browser window
pyautogui.click(tag_3)
time.sleep(1)
Click on the address/search bar
pyautogui.click(tag_30)
Paste the copied value `Dewitt'
pyautogui.hotkey(`ctrl', `v')
Press Enter to perform the search
pyautogui.press(`enter')
print(`Searched for `Dewitt' in the Chrome browser.')

Action 3
print(`DONE')

Action 4
print(`DONE')

Failed.

Claude3 Failed Task3: Please help me change all the places in this document that say ‘text’
to ‘test’.

Action 1
pyautogui.hotkey(`ctrl', `h')
pyautogui.write(`text')
pyautogui.press(`tab')
pyautogui.write(`test')
pyautogui.press(`enter')

Action 2
pyautogui.press(`enter')

Action 3
pyautogui.hotkey(`ctrl', `s')

Failed.

49

D.5 Analysis on SoM Effectiveness

Task w/o SoM: turning off the code checking function of the python plugin in vscode

Action 1
import pyautogui
import time
Move the mouse to the gear icon (Manage) and click it
pyautogui.moveTo(472, 1034, duration=0.5)
pyautogui.click()

Action 2
Move the mouse to the S̈ettings¨ menu item and click it
A rough central point of the `Settings' menu item
pyautogui.moveTo(497 + 385/2, 832 + 25/2, duration=0.5)
pyautogui.click()

Action 3
Move the mouse to the search settings bar and click it
A rough central point of the search settings bar
pyautogui.moveTo(783 + 587/2, 390 + 19/2, duration=0.5)
pyautogui.click()
Type the query to search for Python-related settings
pyautogui.write('python', interval=0.05)

Action 4
Move the mouse to the `Edit in settings.json' button and click it
A rough central point of the button
pyautogui.moveTo(990 + 116/2, 624 + 15/2, duration=0.5)
pyautogui.click()

Action 5
Move the cursor to the correct position
pyautogui.moveTo(889 + 1/2, 432 + 1/2, duration=0.5)
pyautogui.click()
Type the configuration to disable Python missing imports error reporting
pyautogui.write(`reportMissingImports: `none'', interval=0.05)
pyautogui.press(`enter')
Save the changes
pyautogui.hotkey(`ctrl', `s')

Done

Task w/ SoM: turning off the code checking function of the python plugin in vscode

Action 1
import pyautogui
import time
pyautogui.hotkey(`ctrl', `shift', `p')

Action 2
pyautogui.write(`Preferences: Open Settings (UI)', interval=0.05)
time.sleep(0.5)
pyautogui.press(`enter')

Action 3
Click on the search settings input field
pyautogui.click(x=600, y=175)
These coordinates may need to be adjusted for your screen resolution
Type `Python' into the search field
pyautogui.write(`Python', interval=0.05)

50

pyautogui.press(`enter')

Action 4
Click on the search settings bar and type in the query again
pyautogui.click(x=800, y=150)
Click on the search bar, the coordinates may need adjustment
pyautogui.typewrite(`Python missing imports', interval=0.25)

... Can not find the right click area

Failed

D.6 Analysis on SoM Effectiveness

The SoM, effective for web tasks focusing only on labeled bounding boxes, did not excel in our diverse tasks
that required more expertise and flexibility. It shortens the action space of the agent and thus hinders the
agent’s exploration and adaptability. For example in Figure 21, in the task of "turning off the code checking
function of the python plugin." in VS Code, agents without SoM succeeded by editing the settings.json, whereas
SoM-equipped agents struggled with finding and deselecting the checkbox in the settings. The latter has a longer
action path and fails due to incorrect mouse clicks. Furthermore, SoM’s labeling of elements in professional
software also has such errors, that agents without SoM can use a11y tree to calculate and adjust coordinates,
while the elements’ blocks under SoM can be hard to change during the task.

Task Instruction: turning off the code checking function of the python plugin in vscode

(w/ SoM)

(w/o SoM)

Step 1 Step 2 Step 3

Step 1 Step 2 Step 3

Figure 21: A task showcase where the SoM-equipped agent tried to find interactive settings, while
the screen-a11ytree-equipped agents directly modified the value in the setting.json file.

51

	Introduction
	OSWorld Environment
	Task Definition
	Real Computer Environment Infrastructure
	Overview
	Initial Task Environment Setup
	Execution-Based Evaluation

	Observation Space
	Action Space

	OSWorld Benchmark
	Operating System and Software Environments
	Tasks
	Data Statistics
	Human Performance

	Benchmarking LLM and VLM Agent Baselines
	LLM and VLM Agent Baselines
	Results

	Analysis
	Performance by Task Difficulty, Feasibility and App Involved
	Performance by Multimodal Observation Variances
	Performance across Different Operating Systems
	Qualitative Analysis

	Related Work
	Conclusion and Future Work
	Details of OSWorld Environment
	Environment Infrastructure
	Observation Space
	Screenshot
	Accessibility Tree

	Action Space
	PYAUTOGUI
	COMPUTER_13

	Details of OSWorld Benchmark
	Operating System Selection
	Software Selection
	Task Example Sources
	Task Examples Collection
	Initial State Setup Details
	Evaluation Configuration Details
	Ubuntu

	Windows
	More Task Examples

	Details of Baseline Methods
	Hyper-Parameter of the Baseline Agents
	Prompt Details
	Prompt for A11y Tree, Screenshot and their Combination Setting
	Prompt for SoM Setting

	Accessibility Tree Filtering
	Set-of-Mark Implementation Details
	Full Results of Baseline Methods

	Examples of Qualitative Analysis
	Success and Failure Cases
	Common Errors by GPT-4V Agents
	Discrepancies in Task Difficulty between Agent and Human
	Comparative Analysis: Claude-3 vs. GPT-4V
	Analysis on SoM Effectiveness
	Analysis on SoM Effectiveness

