NeuSym-RAG: Hybrid Neural Symbolic Retrieval with Multiview Structuring for PDF Question Answering

SJTU Cross Media Language Intelligence Lab よ海交通大学物味が浮泳で対するで、1880年の1980年に対する 1980年に対する 1980年に対す

Ruisheng Cao*, Hanchong Zhang*, Tiancheng Huang*, Zhangyi Kang, Yuxin Zhang, Liangtai Sun, Hangi Li, Yuxun Miao, Shuai Fan, Lu Chen, and Kai Yu

Structural indexing with database schema · Iterative retrieval with hybrid paradigms · Realistic QA dataset w.r.t. Al research

- **Motivation**

With the exponential growth in academic papers, RAG-based QA systems show great potential to help researchers extract key details from emerging studies. In this work, we propose:

- Integration of vector-based neural retrieval and SQL-based symbolic retrieval. The classic neural retrieval often fails when handling precise queries, while symbolic retrieval breaks down in semantic fuzzy matching or morphological variations.
- Incorporation of multiple views for parsing and vectorizing PDF documents. Commonly utilized scheme to segment documents into chunks is based on a fixed length of consecutive tokens, neglecting the intrinsic structure and the salient features of paratextual tables and figures.

Our paper on ArXiv

Method

Our entire workflow proceeds as follows:

- Parsing. Firstly, we segment the PDF in multiview, extract non-textual elements, and store them in a schema-constrained database.
- **Encoding:** Next, we identify those **encodable columns** in the DB, obtain and insert vectors of cell values into the vectorstore.
- Interaction: Finally, we build an iterative Q&A agent which can predict executable actions to retrieve context and answer the input question.

```
RetrieveFromVectorstore(
    # user input can be rephrased
    query: str,
    # select encoding model/modality
    collection_name: str,
    # (table_name, column_name) together
        defines which view to search
    table_name: str,
    column_name: str,
    # allow fine-grained meta filtering
    filter: str = '',
    limit: int = 5
)
```

an example of the parameterized action

3 stages of NeuSym-RAG: multi-view parsing → multi-modal encoding → agentic interaction

Experiment

Manually annotated PDF-based scholar QA dataset AirQA-Real

• 553 questions + 3 task types + instance-specific evaluation

Category	Question	Answer Format	"eval_func": "eval_structured				
single	On the ALFWorld dataset experiments, how much did the success rate improve when the authors used their method compared to the original baseline model?	Your answer should be a floating-point number with one decimal place.	_object_exact_matcl "eval_kwargs": {				
multiple	I would like to reproduce the experiments of KnowGPT, could you please provide me with the websites of the datasets applied in the experiment?	Your answer should be a Python list of 3 strings, the websites. Note that you should provide the original URL as given in the papers that proposed the datasets.	"gold": ["SCG-NLI", false				
retrieval	Find the NLP paper that focuses on dialogue genera- tion and introduces advancements in the augmentation of one-to-many or one-to-one dialogue data by con- ducting augmentation within the semantic space.	Your answer should be the title of the paper	<pre>"ignore_order": false, "lowercase": true</pre>				

examples of questions and evaluation from AirQA-Real dataset

	AIRQA-REAL					M3SciQA			SciDQA				
Model	text	table	image	formula	metadata	AVG	table	image	AVG	table	image	formula	AVG
Classic-RAG													
GPT-4o-mini	12.3	11.9	12.5	16.7	13.6	13.4	17.9	10.6	15.6	59.4	60.4	59.3	59.8
GPT-4V	13.2	13.9	10.0	13.9	13.6	14.7	12.1	8.8	11.1	56.6	56.8	58.1	57.4
Llama-3.3-70B-Instruct	8.7	7.9	9.5	16.7	0.0	10.0	12.7	8.1	11.3	56.8	58.8	58.9	58.0
Qwen2.5-VL-72B-Instruct	9.6	5.9	11.9	11.1	13.6	10.5	11.6	11.6	11.6	54.8	56.9	56.3	56.2
DeepSeek-R1	11.7	13.9	9.5	30.6	9.1	13.9	11.9	9.5	11.2	63.9	61.3	61.7	62.4
					NeuSym-R	AG							
GPT-4o-mini	33.0	12.9	11.9	19.4	18.2	30.7	18.7	16.6	18.0	63.0	63.6	62.5	63.0
GPT-4V	38.9	18.8	23.8	38.9	27.3	37.3	13.7	13.4	13.6	62.6	63.5	63.2	63.1
Llama-3.3-70B-Instruct	30.6	11.9	16.7	16.7	27.3	29.3	26.3	17.6	23.6	55.5	57.3	56.6	56.4
Qwen2.5-VL-72B-Instruct	43.4	15.8	11.9	25.0	27.3	39.6	20.2	22.7	21.1	60.2	60.6	61.8	60.5
DeepSeek-R1	33.2	16.8	11.9	27.8	18.2	32.4	19.0	13.7	17.4	64.3	64.6	63.9	64.5

- NeuSym-RAG remarkably outperforms Classic RAG on all datasets.
- VLMs perform better in tasks that require vision capability.
- Open-source LLMs are capable of handling this interactive procedure in a zeroshot paradigm, and even better than some closed-source models.

comparisons between our NeuSym-RAG and other agentic baselines

Method	Neural	Symbolic	Multi-view	# Interaction(s)	sgl.	multi.	retr.	subj.	obj.	AVG
Question only				1	5.7	8.0	0.4	9.4	2.7	4.0
Title + Abstract	×	×	×	1	5.7	14.0	0.0	13.1	3.6	5.4
Full-text w/. cutoff				1	28.3	10.7	0.4	26.2	7.6	11.2
Classic RAG	/	×	×	1	18.2	4.0	9.4	8.4	11.0	10.5
Iterative Classic RAG	V		_	≥ 2	8.2	10.0	15.2	5.6	13.2	11.8
Two-stage Neu-RAG	/	×	✓	2	19.5	10.0	5.3	15.9	9.4	10.7
Iterative Neu-RAG	V			≥ 2	37.7	18.7	48.4	32.7	38.3	37.3
Two-stage Sym-RAG	×	1	✓	2	12.2	5.4	9.4	10.6	8.7	9.1
Iterative Sym-RAG		•		≥ 2	32.1	14.7	33.6	27.1	28.3	28.0
Graph-RAG	√	×	✓	2	22.2	11.1	0.0	21.1	11.5	15.6
Hybrid-RAG	/	/	✓	2	23.3	9.3	5.7	16.8	10.5	11.8
NeuSym-RAG (ours)	V	V		> 2	28.3	32.3	58.2	27.1	42.6	39.6

- Two-stage Neu-RAG (multi-view) beats Classic RAG.
- Hybrid RAG (more views) improves further.
- Iterative methods outperforms two-stage ones.
- As turn increases, objective score rises faster.